Ароматическая связь присутствует в молекуле. Ароматичность: критерии ароматичности, правило ароматичности Хюккеля, примеры бензоидных и небензоидных ароматических соединений

Циклические сопряженные системы представляют большой интерес как группа соединений с повышенной термодинамической устойчивостью по сравнению с сопряженными открытыми системами. Эти соединения обладают и другими особыми свойствами, совокупность которых объединяют общим понятием ароматичность. К ним относятся способность таких формально ненасыщенных соединений вступать в реакции замещения, а не присоединения, устойчивость к действию окислителей и температуры.

Типичными представителями ароматических систем являются арены и их производные. Особенности электронного строения ароматических углеводородов наглядно проявляются в атомно-орбитальной модели молекулы бензола. Каркас бензола образуют шесть sp 2 -гибридизованных атомов углерода. Все σ-связи (C-C и C-H) лежат в одной плоскости. Шесть негибридизованных р-АО расположены перпендикулярно плоскости молекулы и параллельно друг другу (рис. 3, а). Каждая р -АО в равной степени может перекрываться с двумя соседними р -АО. В результате такого перекрывания возникает единая делокализованная π-система, наибольшая электронная плотность в которой находится над и под плоскостью σ-скелета и охватывает все атомы углерода цикла (см. рис. 3, б). π-Электронная плотность равномерно распределена по всей циклической системе, что обозначается кружком или пунктиром внутри цикла (см. рис. 3, в). Все связи между атомами углерода в бензольном кольце имеют одинаковую длину (0,139 нм), промежуточную между длинами одинарной и двойной связей.

На основании квантовомеханических расчетов установлено, что для образования таких стабильных молекул плоская циклическая система должна содержать (4n + 2) π-электронов, где n = 1, 2, 3 и т. д . (правило Хюккеля , 1931). С учетом этих данных можно конкретизировать понятие «ароматичность».

Ароматические системы (молекулы) – системы, отвечающие критериям ароматичности :

1) наличие плоского σ-скелета, состоящего из sp 2 -гибридизованных атомов;

2) делокализация электронов, приводящая к образованию единого π-электрон-ного облака, охватывающего все атомы цикла (циклов);

3) соответствие правилу Э. Хюккеля, т.е. электронное облако должно насчитывать 4n+2 π-электронов, где n=1,2,3,4… (обычно цифра указывает на количество циклов в молекуле);

4) высокая степень термодинамической устойчивости (высокая энергия сопряжения).

Рис. 3. Атомно-орбитальная модель молекулы бензола (атомы водорода опущены; объяснение в тексте)

Устойчивость сопряженных систем. Образование сопряженной и особенно ароматической системы - энергетически выгодный процесс, так как при этом увеличивается степень перекрывания орбиталей и происходит делокализация (рассредоточение) р -электронов. В связи с этим сопряженные и ароматические системы обладают повышенной термодинамической устойчивостью. Они содержат меньший запас внутренней энергии и в основном состоянии занимают более низкий энергетический уровень по сравнению с несопряженными системами. По разнице этих уровней можно количественно оценить термодинамическую устойчивость сопряженного соединения, т. е. его энергию сопряжения (энергию делокализации). Для бутадиена-1,3 она невелика и составляет около 15 кДж/моль. С увеличением длины сопряженной цепи энергия сопряжения и соответственно термодинамическая устойчивость соединений возрастают. Энергия сопряжения для бензола гораздо больше и составляет 150 кДж/моль.

Примеры небензоидных ароматических соединений:

Пиридин по электронному строению напоминает бензол. Все атомы углерода и атом азота находятся в состоянии sp 2 -гибридизации, и все σ-связи (C-C, C-N и C-H) лежат в одной плоскости (рис. 4, а). Из трех гибридных орбиталей атома азота две участвуют в образовании

Рис. 4. Пиридиновый атом азота (а), (б) и сопряженная система в молекуле пиридина (в) (связи С-Н для упрощения рисунка опущены)

σ-связей с атомами углерода (показаны только оси этих орбиталей), а третья орбиталь содержит неподеленную пару электронов и в образовании связи не участвует. Атом азота с такой электронной конфигурацией называют пиридиновым.

За счет электрона, находящегося на негибридизованной р-орбитали (см. рис. 4, б), атом азота участвует в образовании единого электронного облака ср -электронами пяти атомов углерода (см. рис. 4, в). Таким образом, пиридин является π,π-сопряженной системой и удовлетворяет критериям ароматичности.

В результате большей электроотрицательности по сравнению с атомом углерода пиридиновый атом азота понижает электронную плотность на атомах углерода ароматического кольца, поэтому системы с пиридиновым атомом азота называют π-недостаточными. Кроме пиридина, примером таких систем служит пиримидин, содержащий два пиридиновых атома азота.

Пиррол также относится к ароматическим соединениям. Атомы углерода и азота в нем, как и в пиридине, находятся в состоянии sp2-гибридизации. Однако в отличие от пиридина атом азота в пирроле имеет иную электронную конфигурацию (рис. 5, а, б).

Рис. 5. Пиррольный атом азота (а), распределение электронов по орбиталям (б) и сопряженная система в молекуле пиррола (в) (связи С-Н для упрощения рисунка опущены)

На негибридизованной р -орбитали атома азота находится неподеленная пара электронов. Она участвует в сопряжении с р -электрона- ми четырех атомов углерода с образованием единого шестиэлектронного облака (см. рис. 5, в). Три sp 2 -гибридные орбитали образуют три σ-связи - две с атомами углерода, одну с атомом водорода. Атом азота в таком электронном состоянии получил название пиррольного.

Шестиэлектронное облако в пирроле благодаря р,п -сопряжению делокализовано на пяти атомах цикла, поэтому пиррол представляет собой π-избыточную систему.

В фуране и тиофене ароматический секстет также включает неподеленную пару электронов негибридизованной p-АО кислорода или серы соответственно. В имидазоле и пиразоле два атома азота вносят разный вклад в образование делокализованного электронного облака: пиррольный атом азота поставляет пару π-электронов, а пиридиновый - один p-электрон.

Ароматичностью обладает также пурин, представляющий собой конденсированную систему двух гетероциклов - пиримидина и имидазола.

Делокализованное электронное облако в пурине включает 8 π-электронов двойных связей и неподеленную пару электронов атома N=9. Общее число электронов в сопряжении, равное десяти, соответствует формуле Хюккеля (4n + 2, где п = 2).

Гетероциклические ароматические соединения обладают высокой термодинамической устойчивостью. Неудивительно, что именно они служат структурными единицами важнейших биополимеров - нуклеиновых кислот.

1. Молекула имеет плоское циклическое строение.

2. Все атомы в цикле в состоянии sp2- гибридизации (следовательно s-скелет плоский и все sp-орбитали параллельны.

3. В молекуле существует делокализованная p-электронная система, содержащая 4n + 2 p-электрона, где n = 0,1,2, – натуральный ряд чисел. Это правило получило название правила Хюккеля

Ароматическим характером обладают и гетероциклические соединения. При замене в молекуле бензола –СН= на –N= образуется гетероциклическое соединение пиридин.

Мезомерный эффект. Электронодонорные и электроноакцепторные заместители. Теория резонанса как качественный способ описания делокализации электронной плотности.

Мезомерный эффект или эф.сопряжение – это передача электронного влияния заместителей по сопряженной системе. В отличии от I (индуктивный)- эффекта, М (мезомерный) –эффект передается по спряж-ной системе без затухания. Замест. пониж-е электр. плотности в сопряж. системе (смещ-е ЭП в свою сторону) проявл. - М-эффект и явл. электроноакцептор. (заместители содерж. кратные связи атома углер. с более отриц. гетероатомами).

Замест. повыш-е электр. плотности в сопряж. системе (смещ-е ЭП от себя в сторону сопряж. системы) проявл. +М-эффект и явл. электронодонор. (заместители содерж. гетероатом. с не поделенной парой электр.)

М-эффект (гидроксо,амино, OR, галогены). - М-эффект (нитро, сульфо, карбоксильная, карбонильная).

Теория резонанса - теория электронного строения хим.соед., в соответствии с которой распределение электронов в молек., является комбинацией (резонансом) канонических структур с различной конфигурацией двухэлектронных ковалентных связей.

Резонансные структуры циклопентадиенид-иона

Конфигурация и конформация – важнейшие понятия стереохимии. Конфигурация. Элементы симметрии молекул (ось, плоскость, центр) и операции симметрии (вращение, отражение). Хиральные и ахиральные молекулы. Асимметрический атом углерода как центр хиральности.

Стериохимия – раздел химии, изуч.простр. строен. молекуы и его влиян. на физ-хим свойства, а так же на направл. и скорость их реакции. В ее основе лежат три фундаментальных понятия: хиральность, конфигурация и конформация.



Конфигурация – это пространств. располож.вход. в состав молекулы атомов или ат. групп без учета различий, возник.в след. вращения вокруг одинарных связей.

Ось симметрии . Если вращение молекулы вокруг какой-либо проходящей через нее оси на угол 2π/n = 360°/n приводит к структуре, не отличающейся от исходной, то такую ось называют осью симметрии n -го порядка С n .

Плоскость симметрии (зеркальная плоскость) представляет собой воображаемую плоскость, которая проходит через молекулу и делит ее на две зеркально-равные части.

При наличии центра симметрии все атомы молекулы, не лежащие в центре симметрии, расположены попарно на одной прямой, проходящей через центр, на одинаковом расстоянии от центра, как, например, в бензоле.

Конформации молекул – различные простр.формы молекул, возник.при изменении относительно ориентации отдельных ее частей в рез. внутр. вращения атомов или групп атомов вокруг ординарных связей, изгиба связей и др.

Если молекулы несовместимы со своим зеркальным изображением. Это свойство называется хиральностью , а сами молекулы – хиральными (означает, что два предмета относятся друг к другу как левая и правая руки (от греч. хирос – рука) и представляют собой зеркальные изображения, не совпадающие при попытке совместить их в пространств).

Асимметрический атом углерода - атом,связанный с четырьмя различными заместителями.

Молекулы с одним центром хиральности (энантиомерия). Глицериновый альдегид как конфигурационный стандарт. Проекционные формулы Фишера. Относительная и абсолютная конфигурация. D-, L- и R-, S -системы стереохимической номенклатуры. Рацематы.

Энaнтиомeры – это стереоизомеры, хиральные молекулы которых отн-ся между собой как предмет и несовместимое с ним зеркальное изображение (представляют собой два оптич. антипода и поэтому называются также оптическими изомерами).

Глицериновый альдегид содержит хиральный центр, сущ.в виде 2-х стереоизомеров, облад. различ. опт.активностью.

Проекционные формулы, предложенные Э. Фишером : 1) углер.скелет распол. вертикально;2)вверху располагают наиб. старшую функц. группу; 3)тетраэдр ориентируют так, чтобы хиральный центр расп-ся в плоскости, заместители, распол-ся справа и слева от углеродной цепи, были направлены вперед от плоскости проекции; по вертикали располагают заместители, уходящие от наблюдателя за плоскость проекции; Асимметр.атом углерода переносится на плоскость в точку пересечения гориз.и вертик.линий. Относительная конфигурация - это взаимное расположение заместителей при разных асимметр. атомах по отношению друг к другу; обычно ее обозначают приставками (цис- и транс-, трео- и эритро- др.). Абсолютная конфигурация - это истинное расположение в пространстве заместителей при каждом асимметрическом атоме молекулы; чаще всего ее обозначают буквами D или L.

R,S-номенклатура .1) Опред-е старшинства заместителей при хиральном центре:а) порядок старшинства сначала уст-ся для атомов, непоср. связ. с центром: «чем больше атомный номер, тем старше заместитель».б) если ближ. атомы одинак., то процедуру следует проводить для атома следующей сферы.2) Расположив самый младший заместитель от наблюдателя, определяют направление падения старшинства оставшихся трех заместителей. Если оно происходит по часовой стрелке – это R-изомер, против – S–изомер. D,L-номенклатура (Связана с проекцией Фишера). Если функц-ая группа при хиральном центре нах-ся справа, то это D-изомер, слева – L-изомер.Энантиомеры отличаются способностью вращать плоскополяризованный свет: справа (+) D, слева (-) L.

7.Возникновение конформаций в результате вращения вокруг σ-связей. Факторы, затрудняющие вращение. Проекционные формулы Ньюмена. Виды напряжений. Энергетическая характеристика конформаций открытых цепей. Связь пространственного строения с биологической активностью

1. Конформации (поворотная изомерия) . Не меняя ни валентных углов, ни длин связей, можно представить себе множество геометрических форм молекулы этана, отличающихся друг от друга взаимным поворотом углеродных тетраэдров вокруг соединяющей их связи С-С. В результате такого вращения возникают поворотные изомеры (конформеры) .

В проекции Ньюмена молекулу рассматривают вдоль связи С-С). Три линии, расходящиеся под углом 120 о из центра круга, обозначают связи ближайшего к наблюдателю углеродного атома; линии, "высовывающиеся" из-за круга - связи удаленного углеродного атома.

Изображенную слева конформацию называют заслоненной . Это название напоминает о том, что атомы водорода обеих СН 3 -групп находятся друг против друга. Заслоненная конформация имеет повышенную внутреннюю энергию, и поэтому невыгодна. Конформацию, изображенную справа, называют заторможенной , подразумевая, что свободное вращение вокруг связи С-С "тормозится" в этом положении, т.е. молекула существует преимущественно в этой конформации.

Минимум энергии, необходимый для полного вращения молекулы вокруг определенной связи называется барьером вращения для данной связи. Барьер вращения в молекуле, подобной этану, может быть выражен через изменение потенциальной энергии молекулы как функции изменения двугранного (торсионного) угла системы. Двугранный угол (обозначаемый ) изображен на рисунке, приведенном ниже:

С усложнением молекулы число возможных конформаций возрастает. Ниже конформации н-бутана изображены в виде проекций Ньюмена. Изображенные слева (заслоненные) конформации энергетически невыгодны, практически реализуются лишь заторможенные.

Циклоалканы. Номенклатура. Малые циклы. Электронное строение циклопропана. Особенности химических свойств малых циклов (реакции присоединения). Обычные циклы. Реакции замещения. Виды напряжений. Энергетическое различие конформаций циклогексана (кресло, ванна, полукресло). Аксиальные и экваториальные связи. Получение. Свойства

Физические свойства. При обычных условиях первые два члена ряда (С 3 - С 4) - газы, (С 5 - С 16) - жидкости, начиная с C 17 - твердые вещества..Получение. 1. Основной способ получения циклоалканов - отщепление двух атомов галогена от дигалогеналканов:

2. При каталитическом гидрировании ароматических углеводородов образуются циклогексан или его производные: t°,P,Ni C 6 H 6 + 3H 2 → C 6 H 12 .

Химические свойства . По химическим свойствам малые и обычные циклы существенно различаются между собою. Циклопропан и циклобутан склонны к реакциям присоединения, т.е. сходны в этом отношении с алкенами. Циклопентан и циклогексан по своему химическому поведению близки к алканам, так как вступают в реакции замещения.1. Так, например, циклопропан и циклобутан способны присоединять бром (хотя реакция и идет труднее, чем с пропеном или бутеном):

2. Циклопропан, циклобутан и даже циклопентан могут присоединять водород, давая соответствующие нормальные алканы.
Присоединение происходит при нагревании в присутствии никелевого катализатора:

3. В реакцию присоединения с галогеноводородами опять же вступают только малые циклы. Присоединение к гомологам цик­лопропана происходит по правилу Марковникова:

4. Реакции замещения. Обычные циклы (С 6 и выше) устойчивы и вступают только в реакции радикального замещения подобно алканам:t°С 6 Н 12 + Вr 2 → С 6 Н 11 Вr + НВr.

5. Дегидрирование циклогексана в присутствии никелевого катализатора приводит к образованию бензола:t° Ni
C 6 H 12 → C 6 H 6 + 3H 2 .6. При действии сильных окислителей (например, 50%-ной азотной кислоты) на циклогексан в присутствии катализатора об­разуется адипиновая (гександиовая) кислота:

Особенности строения циклоалканов и их химическое по­ведение. циклопропан имеет плоское строение, поэтому атомы водорода у соседних атомов углерода располагаются над и под плоскостью цикла в энергетически невыгодном ("заслоненном") положении. Это - одна из причин "напряженности" цикла и его неустойчивости.

Конформации шестичленного цикла: а - кресло: 6 - ванна.Другое возможное для циклогексана расположение атомов со­ответствует конформации ванны, хотя оно менее устойчиво, чем конформация кресла. Следует отметить, что и в конформации кресла, и в конформации ванны связи вокруг каж­дого атома углерода имеют тетраэдрическое расположение. Отсюда - несравнимо большая устойчивость обычных циклов по сравнению с малыми циклами, отсюда - их возможность всту­пать в реакции замещения, но не присоединения.Циклоалканы - это предельные циклические углеводороды. Простейшие представители этого ряда: циклопропан циклобутан. Общая формула CnH2n. Строение. Изомерия и номенклатура.Циклоалканы - это предельные циклические углеводороды. Простейшие представители этого ряда:

Алкены. Номенклатура. Изомерия. Способы получения. Реакции электрофильного присоединения, механизм. Присоединение галогенов, гидрогалогенирование, гидратация и роль кислотного катализа. Правило Марковникова. Представление о реакциях радикального присоединения. Окисление алкенов (озонирование, эпоксидирование).

Алкены- это не циклические УВ, в молекулах которых 2 атома углерода находятся в состоянии sp 2 –гибридизации и связаны друг с другом двойной связью.

Первым представителем гомологического ряда алкенов является этен (этилен) – С 2 Н 4 .. Гомологический ряд алкенов имеет общую формулу С n Н 2n . Характерной особенностью строения алкенов является наличие в молекуле двойной связи >C=C<. Двойная связь образуется при помощи двух пар обобщенных электронов. Углеродные атомы, связанные двойной связью, находятся в состоянии sp²-гибридизации, каждый из них образует три σ-связи, лежащие в одной плоскости под углом 120º.

Для алкенов характерна структурная изомерия: различия в разветвлении цепи и в положении двойной связи, а также пространственная изомерия (цис- и трансизомеры).. По международной номенклатуре алкены называют путем нумерации наиболее длинной цепи начиная с конца, к которому ближе двойная связь. По рациональной номенклатуре они считаются производными этилена, где один или несколько атомов водорода замещены на углеводородные радикалы. Например назовем вещество по международной (ИЮПАК) номенклатурам: СН 3 – С(CH 3)= СН 2 Изобутилен, несимм.-диметилэтилен,2-метил-пропен.

Ароматичность не имеет непосредственного отношения к запаху органических соединений, и является понятием, характеризующим совокупность структурных и энергетических свойств некоторых циклических молекул, содержащих систему сопряженных двойных связей . Термин «ароматичность» был предложен потому, что первые представители этого класса веществ обладали приятным запахом.

К ароматическим соединениям относят обширную группу молекул и ионов разнообразного строения, которые соответствуют критериям ароматичности .

Энциклопедичный YouTube

    1 / 5

    Ароматические соединения и правило Хюккеля

    Мезомерный эффект (эффект сопряжения). Часть 1.

    Ароматичность. Критерии ароматичности органических соединений.

    Ароматические гетероциклы. Ч.1

    Правило ароматичности Хюккеля

    Субтитры

    Я уже говорил о явлении ароматичности, а этот ролик целиком посвящу этой теме. Итак, ароматические вещества. Прежде всего: почему эти вещества называются ароматическими? Очевидно, что от слова «аромат». Вы можете решить, что все ароматические соединения обладают сильным запахом, однако многие из них совсем не пахнут. Тогда почему? Возможно, это из-за того, что они как-то связаны с веществами, имеющими сильный запах, вот их и назвали ароматическими. Это остается тайной. Большинство известных ароматических соединений, 99% таких веществ, представляют собой либо бензол, либо производные бензола. Давайте нарисуем бензол. Обычно молекулу бензола рисуют так. Цикл из 6 атомов с тремя двойными связями. Вот эти три двойные связи. В ролике про резонанс я говорил, что эта структурная формула не единственная. Возможен и другой вариант. Этот электрон может смещаться сюда, этот электрон - сюда, а этот электрон - сюда. Давайте нарисуем, что получится в итоге. Получается вот такая структурная формула. Возможна такая конфигурация молекулы бензола, где двойные связи расположены иначе, чем на первой формуле. Вот такие две формулы. Из ролика про резонанс вы знаете, что на самом деле все немного сложнее. Обе формулы верны. Бензол существует сразу в двух конфигурациях, а не переходит из одной в другую. Это отображается так: цикл из шести атомов углерода с кругом в середине. Так химики часто изображают бензольное кольцо. Это означает, что все π-электроны, которые образуют двойные связи в молекуле, распределены между атомами, размазаны по всему кольцу. Именно делокализация π-электронов в цикле наделяет ароматические вещества их уникальными свойствами. Эта конфигурация намного стабильнее, чем просто статичное чередование одинарных и двойных связей в кольце. Есть еще один способ нарисовать бензол. Я сменю цвет и покажу его желтым. Делокализованность π-электронов показывают следующим образом: пунктирная линия здесь, здесь, здесь, здесь, здесь и здесь. Это самый популярный вариант отображения делокализации электронов в бензольном кольце, то есть наличия сопряженной системы π-электронов. Я расскажу вам, что это такое. Эти две формулы также используются, но истинная структура бензола лежит между этими конфигурациями. Нужно показать вам, что там происходит. Наверняка вы слышали о сопряженных системах π-электронов. Думаю, будет совсем не лишним показать молекулу бензола в трех измерениях. Итак, смотрите. Вот цикл из шести атомов углерода: углерод, углерод, углерод, углерод, углерод, углерод. Каждый из атомов углерода связан еще с тремя атомами, двумя атомами углерода и атомом водорода. Я нарисую водород и его связь с углеродом. Вот атом водорода, вот атом водорода, водород, водород, и еще два атома водорода. У каждого атома углерода есть три гибридные орбитали, это sp2-гибридизация. Кроме того, у каждого из них осталась свободная p-орбиталь. Эта p-орбиталь не образует сигма-связей с соседними атомами. А еще есть p-орбитали, которые похожи на гантели. Вот p-орбиталь, вот p-орбиталь, вот, вот и еще две p-орбитали. На самом деле орбиталей больше, но тогда они бы закрывали рисунок. Не забывайте, что в молекуле бензола есть двойные связи. Я выделю цветом один из атомов углерода. Вот эта сигма-связь соответствует, допустим, этой сигма-связи. Для удобства покажу другую связь. Допустим, эта сигма-связь соответствует этой связи между двумя атомами углерода. Двойная связь, которую я покажу лиловым цветом, образована за счет бокового перекрытия p-орбиталей. p-орбитали соседних атомов углерода перекрываются. Орбиталь - это область, где может оказаться электрон с определенной вероятностью. Эти области большие, они перекрываются и электроны образуют дополнительную π-связь. Что же происходит в сопряженной системе π-электронов. Я запишу это, чтобы вы не забыли. Сопряженная система π-электронов. На этом месте может быть связь, если орбитали перекрываются. Вот так я покажу перекрытие орбиталей. При переходе в другую конфигурацию орбитали станут перекрываться здесь. На самом деле все эти π-электроны скачут по всему кольцу. Электроны путешествуют по всем этим p-орбиталям. Они могут быть в любом месте цикла. Именно это имеют в виду, когда говорят об ароматических свойствах веществ. Из-за этого вещества приобретают особую устойчивость. Большинство ароматических веществ представляют собой именно такие циклы, бензол и его производные. Но есть и другие вещества. Любое вещество, у которого в цикле есть 4n + 2 π-электронов, где n-целое число, обладает ароматичностью, то есть представляет собой ароматическое соединение. Давайте подсчитаем электроны. У каждого атома углерода из шести один π-электрон. У каждого атома углерода одна p-орбиталь, и каждую такую орбиталь занимает один электрон. Итого их 1, 2, 3, 4, 5, 6. Можно по-другому: каждая двойная связь это 2 π-электрона. 1, 2, 3, 4, 5, 6. Это называется соответствием правилу Хюккеля. Думаю, это немецкая фамилия. Правило Хюккеля. Бензол ему соответствует. При n, равном единице, 4 * 1 + 2 = 6. Правило выполняется. При n, равном двум, π-электронов должно быть 10. С десятью π-электронами правило выполняется. Это будет молекула вот такого вида, и она соответствует правилу Хюккеля. Здесь будет 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 атомов углерода в цикле. Здесь 5 двойных связей: 1, 2, 3, 4, 5. Вот так, чтобы связи чередовались. Это тоже ароматическое соединение. У него 10 π-электронов, по одному у каждого атома углерода, ну или по два в каждой двойной связи. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. А теперь то, что меня удивляет. Правилу соответствуют 6 и 10, но не 8. Что же не так с восемью электронами? Почему это число не подходит? А если π-электронов четыре? Допустим, молекула выглядит так, как четырехугольник. Или как дорожный знак - 1, 2, 3, 4, 5, 6, 7, 8 и чередующиеся двойные связи. Будут ли эти вещества также ароматическими соединениями? В них тоже чередуются связи, значит электроны могут смещаться с места на место и делокализовываться в цикле. Смещаться отсюда вот сюда, отсюда сюда. Отсюда сюда, отсюда сюда. Но оказывается, что в подобных веществах π-электроны совсем не стабилизируют систему, и цикл оказывается менее стабилен, чем линейная молекула. И эти молекулы не соответствуют правилу Хюккеля. 4n + 2 - это 6, 10, 14 π-электронов, то есть 14, 10 или 6 атомов углерода. Если число атомов другое, но это цикл с чередованием связей, вещество является антиароматическим. Запишем этот термин. Они очень нестабильны. Они очень нестабильны и размыкаются, становясь линейными молекулами. Надеюсь, вам было интересно. Subtitles by the Amara.org community

История

В 1959 году Сол Винстайн ввёл понятие «гомоароматичность» - термин, применяемый для описания систем, в которых стабилизованная циклическая сопряженная система образуется в обход одного насыщенного атома .

Объяснение ароматичности

Критерии ароматичности

Единой характеристики, позволяющей надежно классифицировать соединение как ароматическое или неароматическое не существует. Основными характеристиками ароматических соединений являются:

  • склонность к реакциям замещения, а не присоединения (определяется легче всего, исторически первый признак, пример - бензол, в отличие от этилена не обесцвечивает бромную воду)
  • выигрыш по энергии, в сравнении с системой несопряженных двойных связей. Также называется Энергией резонанса (усовершенствованный метод - Энергией резонанса Дьюара) (выигрыш настолько велик, что молекула претерпевает значительные преобразования для достижения ароматичного состояния, например циклогексадиен легко дегидрируется до бензола, двух и трехатомные фенолы существуют преимущественно в форме фенолов (енолов), а не кетонов и т. д.)
  • наличие кольцевого магнитного тока (наблюдение требует сложной аппаратуры), этот ток обеспечивает смещение хим-сдвигов протонов, связанных с ароматическим кольцом в слабое поле (7-8 м.д. для бензольного кольца), а протонов расположенных над/под плоскостью ароматической системы - в сильное поле (спектр ЯМР).
  • наличие самой плоскости (минимально искаженной), в которой лежат все (либо не все - гомоароматичность) атомы образующие ароматическую систему. При этом кольца пи-электронов, образующиеся при сопряжении двойных связей (либо электронов входящих в кольцо гетероатомов) лежат над и под плоскостью ароматической системы.
  • практически всегда соблюдается Правило Хюккеля : ароматичной может быть лишь система, содержащая (в кольце) 4n+2 электронов (где n = 0, 1, 2, …). Система, содержащая 4n электронов является антиароматичной (в упрощенном понимании это обозначает избыток энергии в молекуле, неравенство длин связей, низкая стабильность - склонность к реакциям присоединения). В то же время, в случае пери-сочленения (есть атом(ы), принадлежащий(е) одновременно 3 циклам, то есть возле него нет атомов водорода или заместителей), общее число пи-электронов не соответствует правилу Хюккеля (фенален, пирен, коронен). Также предсказывается, что если удастся синтезировать молекулы в форме ленты Мёбиуса (кольцо достаточно большого размера, дабы закручивание в каждой паре атомных орбиталей было мало), то для таких молекул система из 4n электронов будет ароматичной, а из 4n+2 электронов - антиароматичной.

Современные представления

В современной физической органической химии выработана общая формулировка критерия ароматичности

Ароматические углеводороды

В 19 веке ученные обнаружили, что некоторые циклические соединения обладают черезвычайной устойчивостью к восстановлению и окислению. Подобные непредельные соединения не склонны к реакциям присоединения, поэтому долгое время не могли прогидрировать. Например, бензол прогидрировали лишь через сто лет после его открытия.

Брутто формула бензола – С 6 Н 6 . Однако, зная брутто формулу бензола, не могли определиться с его структурной формулой. Например:

Большой вклад в определение структуры и термодинамических характеристик ароматических соединений внесли английские ученые: Ингланд, Илиел Э. и Кекуле.

В основе теории лежат три постулата определяющие особенности ароматических структур :

1) все ароматические соединения являются непредельными и циклическими;

2) все элементы цикличнеской структуры находятся в sp 2 гибридном состоянии;

3) ароматическая структура должна иметь плоскостное строение, то есть все атомы, входящие в цикл компланарны .

Непременным условием ароматичности является правило Хюккеля:

Количество электронов, участвующих в образовании π-системы подчиняется правилу q=4n+2, где n – любое целое положительное число. То есть, при n=0, q=2 (минимальное количество π-электоронов). Для молекулы бензола q=6 (три двойных связи), следовательно, n=1:

Молекулярная орбиталь ароматических соединений является, не просто энергетической суммой атомных орбиталей, входящих в систему элементов, но обладает гораздо меньшей энергией, чем простая сумма входящих в нее элементов.

Гидрирование молекулы бензола, требует больших затрат энергии, чем восстановление трех изолированных двойных связей. Разница в энергиях: 36,6 ккал/моль – показывает энергию делокализации кратных связей в ароматной системе.

Для окисления бензола используют катализаторы ванадиевой группы (без катализатора не окисляется):

Ароматические соединения могут содержать в своем составе гетероатомы, а количество элементов в цикле, может меняться от 3-х до 20-и и более. В циклопропене один из атомов углерода sp 3 -гибриден. Для удовлетворения всем условиям ароматичности каждый элемент цикла должен находиться во втором валентном состоянии.

Как известно, карбокатионы sp 2 -гибридны:

Циклобутадиен неароматичен, так как не соблюдается правило Хюккеля:

Циклопентадиен по этой же причине неароматичен, так как по правилу Хюккеля необходимо еще два π-электрона:

В результате получен:

Подобный анион встречается в природе и может образовывать прочные комплексы с катионами металлов: железом, кобальтом, никелем, которые называются металлоценами :



· Для ароматических гетероциклов

Соединения ароматичны, так как неподеленная пара электронов гетероатомов входит в π-систему.

Азулен – природное соединение состоит из двух конденсированных ароматических циклов, циклопентадиенилий-аниона и циклогептатриенилий-катиона.

При избытке брома присоединяется еще одна его молекула по месту оставшейся двойной связи с образованием 1,2,3,4-тетрабромбутана.

Сопряжение диенов

Сопряжение связей в нереагирующей молекуле называется статическим эффектом сопряжения.

Если соединение с системой сопряженных связей вступает в реакцию, то вследствие взаимного перекрывания р-электронных облаков в момент реакции во всей системе происходит перераспределение электронной плотности, носящее название динамического эффекта сопряжения. Характерной особенностью системы сопряженных связей является то, что перераспределение электронных плотностей по указанным причинам передается по всей системе без заметного ослабления. Поэтому когда происходит присоединение к первому атому сопряженной системы, то перераспределение электронной плотности идет по всей системе, и в конечном итоге ненасыщенным (а потому и присоединяющим) оказывается последний, четвертый атом сопряженной системы. Таким образом, сопряженные двойные связи являются единой системой, ведущей себя аналогично одной двойной связи.

Второй очень важной особенностью диенов с сопряженными двойными связями является крайняя легкость их полимеризации.

Реакции электрофильного замещения (англ. substitution electrophilic reaction) - реакции замещения , в которых атаку осуществляет электрофил - частица, заряженная положительно или имеющая дефицит электронов. При образовании новой связи уходящая частица - электрофуг отщепляется без своей электронной пары. Самой популярной уходящей группой является протон H + .

Все электрофилы являются кислотами Льюиса .

Общий вид реакций электрофильного замещения:

(катионный электрофил)

(нейтральный электрофил)

Выделяют реакции ароматического (широко распространены) и алифатического (мало распространены) электрофильного замещения. Характерность реакций электрофильного замещения именно для ароматических систем объясняется высокой электронной плотностью ароматического кольца, способного притягивать положительно заряженные частицы.

Реакции ароматического электрофильного замещения играют крайне важную роль в органическом синтезе и широко используются как в лабораторной практике, так и промышленности.

Если при разрыве связи общая электронная пара остается у одного атома, то образуются ионы – катион и анион. Такой механизм называется ионным или гетеролитическим. Он приводит к образованию органических катионов или анионов: 1) хлористый метил образует метил-катион и хлорид-анион; 2) метиллитий образует литий-катион и метил-анион.

Критерии ароматичности

Существуют несколько критериев, по которым молекула может быть отнесена к ароматическим.

Правило Хюккеля

Ароматическими являются молекулы, подчиняющиеся правилу Хюккеля : ароматической является плоская моноциклическая сопряженная система, содержащая (4n + 2)π-электронов (где n = 0,1,2…). Это правило выводится непосредственно из квантово-химических вычислений МОХ.

Современные представления

Ненасыщенная циклическая или полициклическая диатропная молекула или ион может

рассматриваться как ароматическая, если все атомы цикла входят в полностью сопряженную систему таким образом, что в основном состоянии все π-электроны располагаются только на связывающих молекулярных орбиталях аннулярной (замкнутой) оболочки.

Электронодонорные заместители проявляют +М- и +I- эффект и повышают электронную плотность в сопряженной системе. К ним относятся гидроксильная группа -ОН и аминогруппа -NН 2 . Неподеленная пара электронов в этих группах вступает в общее сопряжение с p -электронной системой бензольного кольца и увеличивает длину сопряженной системы. В результате электронная плотность сосредоточивается в орто- и пара-положениях:

Электроноакцепторные заместители проявляют -М- эффект и снижают электронную плотность в сопряженной системе. К ним относятся нитрогрупла -NO 2 , сульфогруппа -SO 3 Н, альдегидная -СНО и карбоксильная -СООН группы. Эти заместители образуют с бензольным кольцом общую сопряженную систему, но общее электронное облако смещается в сторону этих групп. Таким образом, общая

электронная плотность в кольце уменьшается, причем меньше всего она уменьшается в мета- положениях.