Что такое петля гистерезиса? Гистерезис магнитный: описание, свойства, практическое применение.

Можно наблюдать диэлектрический гистерезис -- неоднозначную зависимость поляризованности ($\overrightarrow{P}$) от напряженности внешнего поля ($\overrightarrow{E}$) при его циклическом изменении.

Так как сегнетоэлектрик обладает доменной структурой, дипольный момент кристалла сегнетоэлектрика в отсутствии диэлектрика равен нулю, вследствие взаимной компенсации дипольных моментов отдельных доменов. В целом, получается, что домен не поляризован. При наложении поля происходит частичное изменение ориентации доменов и увеличение одних доменов, уменьшение других. Это приводит к возникновению в кристалле поляризации ($\overrightarrow{P}$). Зависимость поляризации от напряженности поля представляет рис.1.

Сначала рост поляризации идет вдоль кривой ОА. В точке $А$ векторы поляризации всех доменов оказываются ориентированными параллельно полю $\overrightarrow{E}$. Начиная с этой точки рост поляризации идет за счет индуцированной поляризации $\overrightarrow{P_i}\sim \overrightarrow{E}$, линия ОА переходит в участок AD (прямолинейный). При продолжении этого участка до пересечения с осью ординат, он отсечет на ней отрезок , его длина равна спонтанной поляризации $P_S$.

При уменьшении напряженности электрического поля, уменьшение поляризации пойдет не по той же кривой в обратную сторону, а по новой кривой $DAB"A"D"$, которая расположена выше. Это и есть диэлектрический гистерезис сегнетоэлектрика. Процесс изменение ориентации и увеличение доменов в электрическом поле задерживается. Получается, что $\overrightarrow{P}$ не однозначно определен полем $\overrightarrow{E}$, а зависит от «истории» сегнетоэлектрика. Если изменять поле в обратном порядке, то зависимость поляризации от напряженности будет изображена нижней кривой $D"A"BAD$, симметричной с кривой $D"A"B"AD$ относительно начала координат О. Так, получается замкнутая кривая $AB"A"BA$, которая носит название диэлектрической петли гистерезиса. Аналогично можно получить петли для электрической индукции. Если по оси ординат откладывать электрическое смещение ($\overrightarrow{D}$):

\[\overrightarrow{D}={\varepsilon }_0\overrightarrow{E}+\overrightarrow{P}\left(1\right).\ \]

Петля гистерезиса для индукции отличается только масштабом от кривых $P=P(E)$, так как в сегнетоэлектриках $E\ll D$, то первым слагаемым в (1) можно пренебречь.

Стрелки на кривой (рис.1) показывают направление движения точки по кривой при изменении напряженности поля. Отрезок ОС характеризует остаточную поляризованность, то есть ту, которую образец сегнетоэлектрика имеет тогда, когда напряженность поля обратилась в ноль. Отрезок $OB"$ характеризует напряженность, имеющую противоположное поляризованности направление, при котором данный сегнетоэлектрик полностью теряет свою поляризацию. Чем больше величина отрезка ОС, тем значительнее остаточная поляризация сегнетоэлектрика. Чем больше размер $OB"$, тем лучше остаточная поляризация удерживается сегнетоэлектриком.

Петля гистерезиса

Петлю гистерезиса легко получить на экране осциллографа. С этой целью соединяют последовательно два конденсатора, пространство между обкладками одного из них заполнено сегнетоэлектриком (его емкость назовем $C_s$). Для питания используют переменный ток от генератора. Так как конденсаторы соединены последовательно, то заряды на их обкладках равны и одинаковы индукции:

где $D_0$ -- индукция поля в конденсаторе с обычным диэлектриком, $D$ - индукция поля в конденсаторе с сегнетоэлектриком. Так как для обычного конденсатора диэлектрическая проницаемость постоянна, то напряжение на обычном конденсаторе пропорционально индукции. Если подать на горизонтально отклоняющие пластины осциллографа напряжение с конденсатора с сегнетоэлектриком, а на вертикально отклоняющие пластины -- с обычного конденсатора, то на экране осциллографа будет воспроизведена петля гистерезиса.

Пример 1

Задание: Объясните, почему говорят, что явление гистерезиса позволяет иллюстрировать роль доменов в поляризации сегнетоэлектрика?

Существование доменов в сегнетоэлектрике обуславливает его нелинейные свойства. В первую очередь это нелинейная зависимость поляризации ($\overrightarrow{P}$) от напряженности внешнего поля ($\overrightarrow{E}$):

\[\overrightarrow{P}={\varkappa \left(\overrightarrow{E}\right)\varepsilon }_0\overrightarrow{E}\left(1.1\right),\]

где $\varkappa \left(\overrightarrow{E}\right)$ -- диэлектрическая восприимчивость зависит от напряженности внешнего поля. Именно нелинейная зависимость поляризации от внешнего поля приводит в электрических полях к гистерезису.

Рассмотрим подробнее рис. 1. В небольших полях (отрезок $OA_1$) поляризация еще линейно зависит от напряженности, домены к поляризации еще не подключились. На участке $A_1A$ идет интенсивный рост поляризации при увеличении напряженности поля, что связано с нелинейным процессом переориентации доменов вдоль направления внешнего поля. В точке А все домены ориентированы по полю. Дальнейшее возрастание поляризации при росте напряженности внешнего поля идет линейно и оно не связано с доменной структурой. Оно идет за счет индуцированной полем поляризации. Уменьшение напряженности поля начиная от точки А повторяет в обратном порядке процесс первичной поляризации. Наличие остаточной поляризации говорит о том, что сегнетоэлектрик пытается сохранить ориентацию доменов в одном направлении. Приложение поля с обратным направлением ведет к уменьшению поляризации сегнетоэлектрика вплоть до нуля. При дальнейшем повышении напряженности обратного поля происходит переполяризация доменов (изменение знака) и в дальнейшем насыщению (участок $A"D"$), то есть ориентации всех доменов по полю, но в противоположном с участком AD направлении.

Пример 2

Задание: Объясните, почему явление гистерезиса можно наблюдать в ходе опыта, который проводят, используя схему с осциллографом, которая представлена на рис.2. Между обкладками одного плоского конденсатора сегнетоэлектрик, его емкость $C_S$. Пространство между обкладками второго конденсатора (С) заполнено обычным диэлектриком. Питается схема от генератора, который создает гармонически изменяющуюся разность потенциалов на обкладках конденсаторов. Площади обкладок конденсаторов равны, расстояния между обкладками конденсаторов, также равны.

Разность потенциалов распределяется между конденсатором, который содержит сегнетоэлектрик ($С_S$) и воздушным конденсатором $C$. Площади обкладок конденсаторов равны, расстояния между обкладками равно $d$. В таком случае напряженности полей в конденсаторах равны:

\ \

где $\sigma ,\ {\sigma }_S$- поверхностные плотности распределения зарядов на обкладках конденсаторов, ${\varepsilon }_1$- диэлектрическая проницаемость обычного диэлектрика, ${\varepsilon }_S$ -- диэлектрическая проницаемость сегнетоэлектрика.

Мы знаем, что у последовательно соединенных конденсаторов заряды на обкладках будут равны, а так как у этих конденсаторов одинаковы их геометрические параметры, то можно записать, что:

\[\sigma =\ {\sigma }_S\left(2.3\right).\]

Следовательно, разности потенциалов между обкладками:

\ \

Найдем отношение $\frac{U_S}{U}$, получим:

\[\frac{U_S}{U}=\frac{уd}{\varepsilon_S \varepsilon_0}:\frac{уd}{{\varepsilon_1 \varepsilon}_0}=\frac{\varepsilon_1}{\varepsilon_S}\ \left(2.6\right).\]

Если напряжение U подать на горизонтальную развертку осциллографа, а $U_S$ -- на вертикальную, то можно записать, что:

Таким образом, при изменении напряженности $(E)$, на экране осциллографа будет прочерчена кривая, абсцисса точек которой в определенном масштабе ${\varepsilon }_SE$, а ордината ${\varepsilon }_0{\varepsilon }_1E=D$ в том же масштабе. Получается, что на экране осциллографа вычерчивается кривая гистерезиса.

Важное свойство сегнетоэлектриков обнаруживается при изучении зависимости электрического смещения (D) от напряженности поля (E). Смещение является не прямо пропорциональным полю. Диэлектрическая проницаемость вещества () зависит от напряженности поля. Кроме того, величина диэлектрического смещения зависит не только от значения напряженности электрического поля в настоящий момент, но и от предыстории состояний поляризации. Это явление носит название диэлектрического гистерезиса . Зависимость смещения D от напряженности поля E для сегнетоэлектриков графически изображается петлей гистерезиса (рис.1).

Между обкладками плоского конденсатора поместим сегнетоэлектрик. Будем изменять напряженность (E) внешнего электрического поля по гармоническому закону. При этом станем проводить измерение диэлектрической проницаемости сегнетоэлектрика (). При этом используется схема, которая состоит из двух конденсаторов, соединенных последовательно. К крайним клеммам конденсаторов присоединен генератор, который создает разность потенциалов, которая изменяется по гармоническому закону. Один из имеющихся конденсаторов заполнен сегнетоэлектриком (его емкость обозначим C), в другом диэлектрик отсутствует (). Считаем, что площади обкладок конденсаторов равны, расстояния между обкладками - d. Тогда напряженности полей конденсаторов:

тогда разности потенциалов между обкладками соответствующих конденсаторов:

где - плотность заряда на пластинах конденсатора. Тогда отношение равно:

Если напряжение U подают на горизонтальную развертку осциллографа, а напряжение на вертикальную развертку, то на экране осциллографа отобразится, при изменении E, кривая, абсцисса точек которой в некотором масштабе равна , а ордината - . Данная кривая будет петлей гистерезиса (рис.1).

Стрелки на представленной кривой указывают направления изменения напряженности поля. Отрезок ОВ - отображает величину остаточной поляризации сегнетоэлектрика. Это поляризация диэлектрика при внешнем поле равном нулю. Чем больше отрезок ОВ, тем больше остаточная поляризация. Отрезок ОС отображает величину напряженности, противоположного направления к вектору поляризации, при которой сегнетоэлектрик полностью деполяризован (остаточная поляризация равна нулю). Чем больше длина отрезка ОС, тем лучше остаточную поляризацию удерживает сегнетоэлектрик.

Петлю гистерезиса можно получить, если производить перемагничивание ферромагнетика в периодическом магнитном поле. Кивая зависимости магнитной индукции магнетика от напряженности внешнего магнитного поля (B(H)) будет иметь вид аналогичный рис.1. Демонстрация петли гистерезиса для ферромагнетиков проводится по выше описанной схеме, но при замене конденсаторов на катушки.

Примеры решения задач

ПРИМЕР 1

Задание Объясните, почему ферромагнетики при циклическом перемагничивании нагреваются тем больше, чем ярче у них выражен гистерезис.
Решение Рассмотрим ферромагнетик, гистерезис которого представлен рис.2.

При увеличении индукции от до совершается работа, которая равна площади, ограниченной ветвью кривой намагничивания 1, то есть площади . При размагничивании до исходного состояния возвращаемая работа равна площади , которая имеет, очевидно меньшую величину. Так, при полном цикле перемагничивания нашего ферромагнетика на каждую единицу объема вещества вводится энергия, равна W, причем:

где S - площадь петли гистерезиса. Данная энергия тратится на выполнение работы против коэрцитивных сил в ферромагнетике и в результате переходит в теплоту. Следовательно, ферромагнетики нагреваются тем больше, чем сильнее у них проявляется гистерезис.

ПРИМЕР 2

Задание Зачем тепло гистерезиса учитывают при расчете электрических приборов и устройств?
Решение Тепло гистерезиса необходимо учитывать при расчете разных электрических устройств, если они содержат ферромагнетики, которые в ходе работы устройства подвержены перемагничиванию. (см. пример 1). Примерами подобных устройств являются железные сердечники трансформаторов, железные якори генераторов постоянного тока. Существование гистерезиса в них ведет к тому, что происходит бесполезная затрата энергии, выделяющаяся в виде теплоты, что понижает коэффициент полезного действия приборов и установок. Для уменьшения ненужных трат используют сорта мягкого железа, у которых петли гистерезиса минимальны, то есть гистерезис проявляется слабо.

Гистерезис в общем понятии (от греческого – отстающий) — это свойство определенных физических, биологических и иных систем, которые реагируют на соответствующие воздействия с учетом текущего состояния, а также предыстории.

Гистерезис характерен т.н. «насыщением», и различными траекториями соответствующих графиков, отмечающих состояние системы в данный момент времени. Последние, в итоге, имеют форму остроугольной петли.

Если же рассматривать конкретно электротехнику, то каждый электромагнитный сердечник после окончания воздействия электрического тока в течение некоторого времени сохраняет собственное магнитное поле, называемое остаточным магнетизмом.

Его величина зависит, прежде всего, от свойств материала: у закаленной стали она существенно выше, чем у мягкого железа.

Но, в любом случае, явление остаточного магнетизма всегда присутствует при перемагничивании сердечника, когда необходимо размагнитить его до нуля, а затем изменить полюс на противоположный.

Любое изменение направления тока в обмотке электромагнита предусматривает (из-за наличия вышеуказанных свойств материала) предварительное размагничивание сердечника. Только после этого он может поменять свою полярность — это известный закон физики.

Для перемагничивания в обратном направлении необходим соответствующий магнитный поток.

Другими словами: изменение сердечника не «поспевает» за соответствующими изменениями магнитного потока, которое оперативно создает обмотка.

Вот эта временная задержка намагничивания сердечника от изменений магнитных потоков и получило название в электротехнике как гистерезис.

Каждое перемагничивание сердечника предусматривает избавление от остаточного магнетизма путем воздействия противонаправленным магнитным потоком. На практике это приводит к определенным потерям электроэнергии, которые тратятся на преодоление «неправильной» ориентации молекулярных магнитиков.

Последние проявляются в виде выделения тепла, и представляют так называемые затраты на гистерезис.

Таким образом, стальные сердечники, например, статоров или якорей электродвигателей или генераторов, а также , должны иметь по возможности наименьшую корреляционную силу . Это позволит снизить гистерезисные потери, повысив в итоге КПД соответствующего электрического агрегата или прибора.

Сам процесс намагничивания определяется соответствующим графиком – так называемой петлей гистерезиса. Она представляет замкнутую кривую, отображающую зависимость скорости намагничивания от изменения динамики напряженности внешнего поля.

Большая площадь петли подразумевает, соответственно, и большие затраты на перемагничивание.

Также практически во всех электронных приборах наблюдается и такое явление, как тепловой гистерезис – невозвращение после прогрева аппаратуры к изначальному состоянию.

В и явление гистерезиса используется в различных магнитных носителях информации (например, триггерах Шмидта), или в специальных гистерезисных электродвигателях.

Широкое распространение этот физический эффект нашел также в различных устройствах, предназначенных для подавления различных шумов (дребезг контактов, быстрые колебания и т. п.) в процессе переключения логических схем.

Гистерезис по определению, это свойство систем, которые не сразу следуют приложенным силам. Реакция этих систем зависит от сил, действовавших ранее, то есть системы зависят от собственной истории.

Рисунок 1. Классическая петля гистерезиса.

По пунктам:

  • казалось бы, что любая выявленная на широком интервале, аналитическая зависимость физических величин вида Y=f(X) при премещении из точки 0(условный ноль, для удобства) в точку 1 является хорошим описанием процесса
  • но, на самом деле, некоторые процессы всегда в одну сторону идут по одной кривой, а в другую по другой (сходясь в конечных точках) - напоминает ежедневный путь на работу и обратно верно?
  • эти явления и получили название явлений "классического гистерезиса" , к основным из которых относят:
    • магнитный гистерезис
    • сегнетоэлектрический гистерезис
    • упругий гистерезис
    • многие другие
  • мы же рассмотрим и явления классического гистерезиса и огромный класс явлений, которые, на первый взгляд, являются явлениями гистерезиса, но показывают совершенно самостоятельное поведение, назовем их "инженерный гистерезис"
  • подробные описания явлений классического гистерезиса широко доступны и не являются предметом рассмотрения

Что такое "инженерный гистерезис"? В отличие от классического гистерезиса "инженерный гистерезис" обусловлен не остаточными явлениями в системе при смене направления процесса, а резким изменением свойств системы в точках начала и конца процесса (например, при срабатывании автоматики, меняющем коммутацию/геометрию/логику и др. внутри системы).

Проиллюстрируем разницу. Рисунки 2 и 3 показывают полные кривые гистерезиса для классического и инженерного гистерезисов. При движении из точки 0 в точку 1 при отличий нет. Но!

Рассмотрим вопрос о том, как ведет себя система, обладающая гистерезисом по каким-то свойствам (характеристикам) в том случае, если процесс перемещения из точки начала процесса в точку конца будет прерван где-то посередине.

Обратите внимание! В классическом гистерезисе смена направления процесса образует новую петлю гистерезиса. В "инженерном гистерезисе" при недостижении крайних точек процесса ничего подобного не происходит. К чему это приведет?


Рисунок 4. Прерваный процесс на петле "инженерного гистерезиса".

  • Контрольный параметр Y для работы автоматики зависит от рабочего параметра Р, и на первый вид эта зависимость - гистерезис, хоть это и не так на самом деле
  • В зависимости от того, на каком из участков процесса находится рабочая точка сейчас эта зависимость носит различный характер
  • При аварии или обрыве питания, в зависимости от настроек работы системы "по умолчанию" для промежуточных точек между уровнями включения и выключения автоматики повторный запуск наверняка приведет к нештатным относительно контрольного параметра значениям рабочего параметра
  • Требуется определенное внимание инженера при перезапуске процесса к тому на каком из этапов процесса произошел сбой
  • Иногда требуются специальные решения для защиты логики системы от неверной интерпретации состояния системы
  • Проблема особенно характерна для систем с дискретным (релейным) регулированием, но не только для них
  • Данный процесс, строго говоря, вообще гистерезисом не является и употребление термина может вызывать недопонимание при общении с другими инженерами и, особенно, с инженерами-учеными
  • другое прочее

Петля гистерезиса. При циклическом изменении напряженности постоянного магнитного поля от 0 до +Н, от +Н до –Н и снова от –Н до +Н кривая изменения индукции (кривая перемагничивания) имеет форму замкнутой кривой – петли гистерезиса. Для слабых полей петля имеет вид эллипса. При увеличении значения напряженности магнитного поля Н получают серию заключенных одна в другую петель гистерезиса. Когда все векторы намагниченности доменов сориентируются вдоль направления поля, процесс намагничивания закончится состоянием технического насыщения намагниченности материала. Петлю гистерезиса, полученную при условии насыщения намагничивания, называют предельной петлей гистерезиса. Она характеризуется максимально достигнутым значением индукции Bs, называется индукцией насыщения. При уменьшении напряженности магнитного поля от +Н до 0 магнитная индукция сохраняет остаточную индукцию Вс. Чтобы получить остаточную магнитную индукцию, равную 0, необходимо приложить противоположно направленное размагничивающее поле определенной напряженности -Нс. Отрицательная напряженность магнитного поля -Нс называется коэрцитивной силой материала. При достижении напряженности магнитного поля значения –Н, а затем 0 вновь возникает остаточная индукция –Вс. Если повысить напряженность магнитного поля до +Нс, то остаточная магнитная индукция Вс будет равна 0. Площадь гистерезисных петель в промежуточных и предельных состояниях характеризует рассеивание электрической энергии в процессе перемагничивания материала, т.е. потери на гистерезис. Площадь гистерезисной петли зависит от свойств материала, его геометрических размеров и частоты перемагничивания. По предельной петле гистерезиса определяют такие характеристики магнитных материалов, как индукцию насыщения Bs, остаточную индукцию Вс, коэрцитивную силу Нс.

Кривая намагничивания

Кривая намагничивания. Это важнейшая характеристика магнитных материалов, она показывает зависимость намагниченности или магнитной индукции материала от напряженности внешнего поля Н. Магнитная индукция материала Bi измеряется в теслах (Тл) и связана с намагниченностью. Основная (коммутационная) кривая намагничивания представляет собой геометрическое место вершин петель гистерезиса, полученных при циклическом перемагничивании и отражает изменение магнитной индукции В в зависимости от напряженности магнитного поля Н, которое создается в материале при намагничивании. Напряженность магнитного поля в образце в виде тороида, когда магнитная цепь замкнута, равна напряженности внешнего поля Нв. В разомкнутой магнитной цепи на концах образца появляются магнитные полюса, создающие размагничивающее поле Нр. Разница между магнитными напряженностями внешнего и размагничивающего полей определяют внутреннюю магнитную напряженность Hi материала. Основная кривая намагничивания имеет ряд характерных участков, которые можно условно выделить при намагничивании монокристалла ферромагнетика. Первый участок кривой намагничивания соответствует процессу смещения границ менее благоприятно ориентированных доменов. На втором участке происходит поворот векторов намагниченности доменов в направлении внешнего магнитного поля. Третий участок соответствует парапроцессу, т.е. завершающему этапу процесса намагничивания, когда сильное магнитное поле поворачивает в направлении своего действия не сориентированные магнитные моменты доменов ферромагнетика.