Что значит термодинамическое равновесие. Термодинамическое равновесие и устойчивость

Любая термодинамическая система (ТС) может находиться либо в равновесном, либо в неравновесном состояниях. Общим условием равновесия в механике является равенство нулю суммы работ при малых перемещениях, отвечающих связям системы. Этому условию соответствует экстремум потенциальной энергии. Если это минимум, то при смещении от состояния равновесия расходуется положительная работа (dℒ >0) и состояние равновесия является устойчивым. В термодинамике роль потенциальной энергии выполняют характеристические функции.

Условия термодинамического равновесия для различных сопряжений ТС с окружающей средой с фиксацией двух параметров определяются по поведению характеристических функций, которые позволяют судить о направлении протекания химических реакций и фазовых переходов.

Для простых (dℒ =0), закрытых ТС при фиксации двух параметров имеем:

Для необратимых процессов:

т.е. необратимые, неравновесные процессы в простой, закрытой ТС протекают в направлении уменьшения соответствующего термодинамического потенциала. В состоянии равновесия значение соответствующего потенциала достигает минимума, и условия равновесия ТС имеют вид:

При отклонении от состояния равновесия в любую сторону соответствующий термодинамический потенциал возрастает.

Рассмотрим равновесие закрытых ТС, у которых, кроме условий сопряжения с окружающей средой, имеет место воздействие лишь одной силы немеханического характера. Тогда объединенные выражения 1-го и 2-го уравнений термодинамики примут вид:

ℒ, (35)

Работу немеханического характера в (35) будем представлять в виде:

ℒ , Дж, (36)

где А – термодинамическое сродство, Дж/моль, x - путь термодинамического процесса, моль.

Термодинамическое сродство вводится соотношением:

Дж/моль, (37)

где - некомпенсируемая теплота, т.е. количество работы, которое диссипировало (рассеялось) в энергию теплового движения частиц на длине пути процесса. Таким образом, термодинамическое сродство – это количество энергии упорядоченного движения частиц (работы), которое диссипировало (рассеялось) на длине пути процесса внутри ТС. При А =0 – процесс обратимый, при А >0 – процесс необратимый. После подстановки выражения (36) для в уравнения (35) получим:

Таким образом, U=U (S,V,x ), H=H (S,p, x ), F=F (T,V,x ), G=G (T,p, x ) и при фиксации двух первых параметров в уравнениях (38) будем иметь:

Так, потенциал Гиббса при фиксации значений Т и р из (38) равен:


Следовательно, термодинамическое сродство определяется через частные производные характеристических функций по пути процесса .

Примером термодинамического сродства является химическое сродство. В этом случае величина пути процесса называется пробегом химической реакции.

При стремлении ТС к состоянию равновесия потенциал Гиббса стремится к минимуму своего значения (G T , p ®G T , p min ) при фиксированных значениях Т и р , которое достигается при равновесном значении (при этом величина термодинамического сродства А =0), как это видно из приведенного рисунка:

Равновесное состояние ТС можно охарактеризовать также по изменению энтропии. При необратимых, неравновесных процессах внутри адиабатной, закрытой ТС изменение энтропии dS=dS in >0, т.е. энтропия растет и достигает максимума в состоянии равновесия: dS =0, S=S max . При раскачивании ТС относительно состояния равновесия энтропия будет уменьшаться, а термодинамические потенциалы увеличиваться.

РАВНОВЕСНЫЕ И НЕРАВНОВЕСНЫЕ ПРОЦЕССЫ. ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ.

Системой называется конечная область пространства с находящимися в ней физическими объектами исследования. Граница системы может быть материальной или воображаемой, неподвижной или движущейся, проницаемой или непроницаемой для вещества.

Мы будем изучать свойства макроскопических систем, т.е. систем, состоящих из огромного числа частиц – молекул, атомов или ионов. Такой макроскопической системой может быть отдельное тело (например, газ, жидкость и находящийся в равновесии с ней пар). Все тела, не входящие в рассматриваемую систему, но могущие влиять на ее свойства называютсясредой . Если, например, системой является газ, заключенный в цилиндр с поршнем, то цилиндр и поршень в систему не входят, но свойства системы, в частности ее объем, зависят от положения поршня. Поэтому в данном случае цилиндр и поршень относятся к среде.

Для описания поведения и свойств макроскопических систем обычно пользуются непосредственно измеряемыми величинами, которые характеризуют систему в целом и ее отношение к окружающей среде, но не имеют смысла в применении к отдельным частицам. К числу таких величин, называемых макроскопическими параметрами состояния системы , относятся, например, такие величины, как Р, Т,V,и т.п. Состояние системы, заданное с помощью макропараметров, характеризующих поведение системы в целом, называетсямакросостоянием .

Опыт показывает, что всякая макроскопическая система, изолированная от внешней среды, всегда самопроизвольно переходит в состояние так называемого термодинамического равновесия , которое характеризуется тем, что всякие макроскопические изменения в системе прекращаются и каждый параметр, характеризующий то или иное макроскопическое свойство системы, имеет постоянное во времени значение. Система, перешедшая в состояние термодинамического равновесия, самопроизвольно никогда из него не может выйти. Для нарушения равновесия необходимы внешние воздействия. Процесс перехода системы в состояние термодинамического равновесия называетсярелаксацией , а время, потребное на это, называетсявременем релаксации . Для разных процессов в разных системах время релаксации различно. Оно может быть очень малым и очень большим. Например, выравнивание давления в газе происходит за доли секунды, а выравнивание концентрации при диффузии может длиться минуты в газах, а в твердых телах – часы, недели и даже годы.

Термодинамическое равновесие есть равновесие статистическое. О нем можно говорить только в случае, когда число частиц, составляющих систему, очень велико. Параметры состояния системы при равновесии, строго говоря, не остаются постоянными, а испытывают небольшие колебания около своих равновесных значений. Например, при большом числе молекул некоторые отклонения от равномерного распределения их по объему могут иметь место в отдельных частях сосуда. Однако, средняя плотность газа во всем объеме будет одинакова и постоянна.

Состояние термодинамического равновесия является наиболее простым состоянием макроскопической системы. В этом состоянии поведение системы описывается небольшим числом макроскопических параметров. Например, состояние простейших систем – газов, жидкостей и твердых тел при отсутствии внешних силовых полей может быть в условии термодинамического равновесия однозначно определено какими-либо двумя из трех величин Р, Т, V, которые при отсутствии внешних полей имеют одинаковые значения во всех частях системы. Каждое такое равновесное состояние может быть изображено точкой на графике Р-Vили Т-V. Неравновесное состояние не может быть изображено подобным способом, потому что хотя бы один из параметров в неравновесном состоянии не будет иметь определенного значения.

Всякий процесс, т.е. переход системы из одного состояния в другое, связан с нарушением равновесия в системе. При этом нарушение равновесия тем значительнее, чем быстрее происходит процесс. Пример: изменение Р при быстром и медленном сжатии газа в цилиндре с плотно пригнанным поршнем.

В пределе, если сжатие газа происходит бесконечно медленно, газ в каждый момент времени будет характеризоваться определенными значениями давления. Следовательно, в этом случае состояние газа в каждый момент времени является равновесным, и бесконечно медленный процесс будет состоять из последовательности равновесных состояний. Процесс, состоящий из непрерывной последовательности равновесных состояний, называется равновесным или квазистатическим процессом. Из сказанного выше следует, что равновесным может быть только достаточно медленный процесс, поэтому равновесный процесс является абстракцией.Практически близкими к равновесным являются такие процессы, при которых скорость изменения параметров системы гораздо меньше скорости изменения тех же параметров при релаксации. Равновесный процесс может быть изображен на графике Р-Vили Т-Vсоответственной кривой. Неравновесный процесс не может быть изображен графически. Если все же применить для неравновесных процессов графическое изображение, то это имеет только тот смысл, что показывает относительный ход этих процессов по сравнению с равновесными.

Все количественные выводы термодинамики строго применимы только к равновесным процессам.

Равновесные процессы в отличие от неравновесных обладают одной важной особенностью: они являются процессами обратимыми, в то время как неравновесные процессы всегда необратимы.

Обратимым процессом называется такой процесс, который может быть проведен в обратном направлениитак, чтобы система прошла черезте же промежуточные состояния, что и в прямом направлении, но в обратной последовательности, и чтобы при этом в окружающей систему среде не произошло никаких изменений.

Если же процесс протекает таким образом, что после его окончания систему нельзя вернуть в начальное состояние так, чтобы она проходила через те же промежуточные состояния, но только в обратном порядке, и чтобы при этом нигде в среде не осталось никаких изменений, то процесс называется необратимым .

Обратимый процесс в отличие от необратимого обладает следующим свойством: если при прямом ходе на каком-то элементарном участке процесса система получает тепло Qи совершает работуdА, то при обратном ходе на том же участке система отдает теплоQ= -Qи над ней совершается работаdА= -dА. Привести примеры обратимых и необратимых процессов.

1. Экстремальные свойства термодинамических потенциалов.

2. Условия равновесия и устойчивости пространственно однородной системы.

3. Общие условия равновесия фаз в термодинамических системах.

4. Фазовые переходы I-го рода.

5. Фазовые переходы II-го рода.

6. Обобщение полуфеноменологической теории.

Вопросы устойчивости термодинамических систем рассматривались в предыдущей теме применительно к задаче химического равновесия. Поставим задачу теоретического обоснования сформулированных ранее условий (3.53) на основе II начала термодинамики, используя свойства термодинамических потенциалов.

Рассмотрим макроскопическое бесконечно малое изменение состояния системы: 1 -2, при котором все ее параметры относятся на бесконечно малую величину:

Соответственно:

Тогда в случае квазистатического перехода из обобщенной формулировки I и II начала термодинамики (2.16) следует:

В случае, если 1-2 является неквазистатическим, то выполняются следующие неравенства:

В выражении (4.3) величины со штрихом соответствуют неквазистатическому процессу, а величины без штриха - квазистатическому. Первое неравенство системы (4.3) характеризует полученный на основе обобщения многочисленных опытных данных принцип максимального поглощения тепла, а второе - принцип максимальной работы.

Записывая работу для неквазистатического процесса в виде и вводя аналогичным образом параметры и, получим:

Выражение (4.4) абсолютно эквивалентно неравенству Клаузиуса.

Рассмотрим основные следствия (4.4) для различных способов описания термодинамических систем:

1. Адиабатически изолированная система: (). Соответственно. Тогда:

Это означает, что если зафиксировать переменные состояния системы, то вследствие (4.5) ее энтропия будет возникать до тех пор, пока в системе, согласно нулевого начала термодинамики, не наступит состояния равновесия. То есть равновесия состояния соответствует максимуму энтропии:

Вариации в (4.6) производятся по тем параметрам, которые при указанных фиксированных параметрах системы могут принимать неравновесные значения. Это могут быть концентрация п , давление р , температура ит.д.

2. Система в термостате (). Соответственно что позволяет переписать (4.4) в виде:

Учитывая вид выражения для свободной энергии: и равенство, получаем:

Таким образом течение неравновесных процессов для системы, помещенной в термостат, сопровождается уменьшением ее свободной энергии. А равновесное значенте соответствует ее минимуму:

3. Система под поршнем (), т.е. .В этом случае соотношение (4.4) принимает вид:

Таким образом равновесие в системе под поршнем наступает при достижении минимального значения потенциала Гиббса:

4. Система с воображаемыми стенками (). Тогда. Тогда

что позволяет записать

Соответственно в системе с воображаемыми стенками неравновесные процессы направлены в сторону уменьшения потенциала, а равновесие достигается при условии:

Условие определяет само состояние равновесия системы и широко используется при исследовании многокомпонентных или многофазных систем. Условия минимума или максимума определяют критерии устойчивости этих равновесных состояний по отношению к самопроизвольным или искусственно создаваемым возмущениям системы.

Кроме того, наличие экстремальных свойств у термодинамических потенциалов позволяет использовать для их исследования вариационных методов по аналогии с вариационными принципами механики. Однако, в этих целях требуется использование статистического подхода.

Рассмотрим условия равновесия и устойчивости термодинамических систем на примере газа, помещенного в цилиндр над поршнем. Кроме того, для упрощения анализа пренебрежем внешними полями, полагая. Тогда переменными состояния являются ().

Ранее отмечалось, что на термодинамическую систему можно оказывать воздействия либо совершая работу над ней, либо сообщая ей некоторое количество тепла. Поэтому следует проанализировать равновесие и устойчивость по отношению к каждому из отмеченных воздействий.

Механическое воздействие связано со смещением незакрепленного поршня. В этом случае работа на систему равно

В качестве внутреннего параметра, который может изменяться и по которому следует осуществлять варьирование, выберем объем.

Представляя потенциал Гиббса через свободную энергию

и производя варьирование, запишем:

Из последнего равенства следует:

Выражение (4.13) следует рассматривать как уравнение относительно равновесного значения объема при заданных параметрах системы ().

Условия устойчивости равновесного состояния имеет вид:

Учитывая (4.13), последнее условие можно переписать в виде:

Условие (4.14) накладывает определенные требования на уравнение состояния. Так, изотермы идеального газа

всюду удовлетворяют условию устойчивости. В то же время, уравнение Ван-дер-Ваальса

или уравнения Дитериги

имеют участки на которых условия устойчивости не выполняются, и которые не соответствуют реальным равновесным состояниям, т.е. экспериментально реализуется.

Если же в некоторой точке изотермы, то для проверки устойчивости используют специальные методы математического анализа, т.е. проверяют выполнение условий:

Аналогичным образом требования устойчивости, предъявляемые к уравнению состояния, могут быть сформулированы и для других параметров системы. Рассмотрим в качестве примера зависимость химического потенциала. Введем плотность числа частиц. Тогда химический потенциал можно представить в виде.

Вычислим дифференциал в зависимости от переменных состояния:

При записи последнего выражения учтено, что и использовано термодинамическое тождество (3.8). Тогда

То есть условие устойчивости для химического потенциала принимает вид

В критической точке при наличии прогиба имеем:

Перейдем к анализу устойчивости системы к тепловому воздействию, связанного с передачей некоторого количества тепла. Тогда в качестве вариационного параметра рассмотрим энтропию системы S . Для учета именно теплового воздействия зафиксируем механические параметры. Тогда в качестве переменных термодинамического состояния удобно выбрать набор, а в качестве термодинамического потенциала свободную энергию.

Выполняя варьирование, находим:

Из условия равновесия получаем

Уравнения (4.21) следует рассматривать как уравнение для равновесного значения энтропии. Из положительности второй вариации свободной энергии:

Поскольку температура всегда принимает положительные значения из (4.22) следует:

Выражение (4.23) является искомым условием устойчивости термодинамической системы по отношению к нагреванию. Некоторые авторы рассматривают положительность теплоемкости как одно из проявлений принципа Ле-Шателье - Брауна. При сообщении термодинамической системе количества тепла:

Ее температура возникает, что, в соответствии со вторым началом термодинамики в формулировке Клаузиуса (1850г.), приводит к уменьшению количества теплоты, поступающего в систему. Иначе говоря, в ответ на внешние воздействия - сообщение количества теплоты - термодинамические параметры системы (температура) меняются таким образом, что внешние воздействия ослабляются.

Рассмотрим вначале однокомпонентную систему, находящуюся в двухфазном состоянии. Здесь и далее под фазой будем понимать однородное вещество в химическом и физическом отношении.

Таким образом, каждую фазу будем рассматривать как однородную и термодинамически устойчивую подсистему, характеризуемую общим значением давления (в соответствии с требованием отсутствия тепловых потоков). Исследуем условие равновесия двуфазной системы по отношению к изменению числа частиц и, находящихся в каждой из фаз.

С учетом сделанных допущений наиболее удобным является использование описания системы под поршнем с фиксацией параметров (). Здесь - общее число частиц в обеих фазах. Также для простоты “выключим” внешние поля (а =0).

В соответствии с выбранным способом описания условием равновесия является условие (4.10) минимума потенциала Гиббса:

которое дополняется условием постоянства числа частиц N :

Выполняя варьирование в (4.24а) с учетом (4.24б) находим:

Таким образом, общим критерием равновесия двуфазной системы является равенство их химических потенциалов.

Еси известны выражения химических потенциалов и, то решением уравнения (4.25) будет некоторая кривая

называемая кривой фазового равновесия или дискретной фазового равновесия.

Зная выражения для химических потенциалов, из равенства (2.юю):

мы можем найти удельные объемы для каждой из фаз:

То есть, (4.26) можно переписать в виде уравнений состояния для каждой из фаз:

Обобщим полученные результаты на случай n фаз и k химически нереагирующих компонент. Для произвольной i -й компоненты уравнение (4.25) примет вид:

Легко видеть, что выражение (4.28) представляет систему (n- 1) независимых уравнений. Соответственно из условий равновесия для k компонент получаем k (n -1) независимых уравнений (k (n -1) связей).

Состояние термодинамической системы в этом случае задается температурой, давлением p и k -1 значениями относительных концентраций компонент в каждой фазе. Таким образом состояние системы в целом задается параметром.

Учитывая наложенных связей, найдем число независимых параметров системы (степенной свободы).

Равенство (4.29) называют правилом фаз Гиббса.

Для однокомпонентной системы () в случае двух фаз () имеется одна степень свободы, т.е. мы произвольно можем изменять только один параметр. В случае же трех фаз () не имеется степеней свободы (), то есть сосуществование трех фаз в однокомпонентной системе возможно только в одной точке, называемой тройной точкой. Для воды тройная точка соответствует следующим значениям: .

Если система не однокомпонентна, возможны боле сложные случаи. Так, двуфазная () двукомпонентная система () обладает двумя степенями свободы. В этом случае вместо кривой фазового равновесия получим область в виде полосы, границы которой соответствуют фазовым диаграммам для каждой из чистых компонент, а внутренние области соответствуют различным значениям относительной концентрации компонент. Одна степень свободы в данном случае соответствует кривой сосуществования трех фаз, а соответствует четвертой точке сосуществования четырех фаз.

Как было рассмотрено выше, химический потенциал можно представить в виде:

Соответственно первые производные от химического потенциала равны удельным значениям энтропии, взятой с обратным знаком, и объеме:

Если в точках, удовлетворяющих фазовому равновесию:

первые производные химического потенциала для разных фаз испытывают разрыв:

говорят, что термодинамическая система испытывает фазовый переход I-го рода.

Для фазовых переходов первого рода характерно наличие срытой теплоты фазового перехода, отличной от нуля, и скачок удельных объемов системы. Скрытая удельная теплота фазового перехода определяется из соотношения:

а скачок удельного объема равен:

Примерами фазовых переходов первого рода являются процессы кипения и испарения жидкостей. Плавления твердых тел, преобразования кристаллической структуры и т.д.

Рассмотрим две близлежащие точки на кривой фазового равновесия () и (), параметры которых различаются на бесконечно малые величины. Тогда уравнение (4.25) справедливо и для дифференциалов химических потенциалов:

отсюда следует:

Выполняя преобразования в (4.34), получим:

Выражение (4.35) получило название уравнения Клапейрона - Клаузиуса. Это уравнение позволяет получить вид кривой фазового равновесия по известным из эксперимента значениям теплоты фазового перехода и объемов фаз и без привлечения понятия химического потенциала, которое достаточно сложно определить как теоретически, так и экспериментально.

Большой практический интерес представляют так называемые метастабильные состояния. В этих состояниях одна фаза продолжает существовать в области устойчивости другой фазы:

Примерами достаточно устойчивых метастабильных состояний являются алмазы, аморфное стекло (наряду с кристаллическим горным хрусталем) и т.д. В природе и промышленных установках широко известны метастабильные состояния воды: перегретая жидкость и переохлажденный пар, а также переохлажденная жидкость.

Важным обстоятельством является то, что условием экспериментального осуществления этих состояний является отсутствие в системе новой фазы, примесей, загрязнений и т.д., т.е. отсутствие центра конденсации, парообразования и кристаллизации. Во всех этих случаях новая фаза возникает первоначально в малых количествах (капли, пузыри или кристаллы). Поэтому существенными становятся поверхностные эффекты, соизмеримые с объемными.

Для простоты ограничимся рассмотрением простейшего случая сосуществования двух пространственно неупорядоченных фазовых состояний - жидкости и пара. Рассмотрим жидкость, в которой находится небольшой пузырек насыщенного пара. При этом вдоль поверхности раздела действует сила поверхностного натяжения. Для ее учета введем параметры:

Здесь - площадь поверхности пленки,

Коэффициент поверхностного натяжения. Знак “-” во втором равенстве (4.36) соответствует тому, что пленка стягивается и работа внешней силы направлена на увеличение поверхности:

Тогда с учетом поверхностного натяжения потенциал Гиббса изменится на величину:

Вводя модель системы под поршнем и, учитывая равенство, запишем выражение для потенциала Гиббса в виде

Здесь и - удельные значения свободной энергии, и - удельные объемы каждой из фаз. При фиксированных значениях () величина (4.39) достигает минимума. При этом потенциал Гиббса можно проварьировать по. Эти величины связаны с помощью соотношения:

где R можно выразить через: . Выберем в качестве независимых параметров величины, тогда потенциал Гиббса (4.39) можно переписать в виде:

(здесь учтено)

Выполняя варьирование (4.40), запишем:

Учитывая независимость величин, сведем (4.41) к системе



Проанализируем полученное равенство. Из (4.42а) следует:

Его смысл в том, что давление в фазе 1 равно внешнему давлению.

Вводя выражения для химических потенциалов каждой из фаз и учитывая

запишем (4.42б) в виде:

Здесь - давление во II фазе. Отличие уравнения (4.44) от условия равновесия фаз (4.25) в том, что давление в (4.44) в каждой из фаз может быть различным.

Из равенства (4.42в) следует:

Сравнивая полученное равенство с (4.44) и выражением для химического потенциала, получим формулу для давления газа внутри сферического пузырька:

Уравнение (4.45) представляет собой известную из курса общей физики формулу Лапласа. Обобщая (4.44) и (4.45) запишем условия равновесия между жидкостью и пузырьком пара в виде:

В случае исследования задачи фазового перехода жидкость - твердое тело ситуация существенно осложняется в связи с необходимостью учета геометрических особенностей кристаллов, анизотропии направления преимущественного роста кристалла.

Фазовые переходы наблюдаются и в более сложных случаях, при которых разрыв терпят только вторые производные химического потенциала по температуре и давлению. В этом случае кривая фазового равновесия определяется не одним, а тремя условиями:

Фазовые переходы, удовлетворяющие уравнениям (4.47), получили название фазовых переходов II рода. Очевидно, скрытая теплота фазового перехода и изменение удельного объема в этом случае равно нулю:

Для получения дифференциального уравнения кривой фазового равновесия использовать уравнение Клапейрона - Клаузиуса (4.35) нельзя, т.к. при непосредственной подстановке в выражение (4.35) значений (4.48), получается неопределенность. Учтем, что при движении вдоль кривой фазового равновесия сохраняется условие и. Тогда:

Вычислим производные в (4.49)

Подставляя полученные выражения в (4.49), находим:

Система линейных уравнений (4.51), записанная относительно и является однородной. Поэтому ее нетривиальное решение существует только в том случае, если определитель, составленный из коэффициентов равен нулю. Поэтому запишем

Учитывая полученное условие и выбирая из системы (4.51) любое уравнение, получаем:

Уравнения (4.52) для кривой фазового равновесия в случае фазового перехода II рода получили название уравнений Эренфеста. В этом случае кривая фазового равновесия может быть определено по известным характеристикам скачков теплоемкости, коэффициента теплового расширения, коэффициента упругости.

Фазовые переходы второго рода встречаются значительно ранее фазовых переходов I рода. Это очевидно даже из условия (4.47), которое значительно жестче уравнения кривой фазового равновесия (4.юю) с условиями (4.31). Примерами таких фазовых переходов может служить переход проводника из сверхпроводящего состояния в нормальное при отсутствии магнитного поля.

Кроме того, встречаются фазовые переходы с равной нулю скрытой теплотой, для которых при переходе наблюдается наличие сингулярности в калорическом уравнении (теплоемкость терпит разрыв второго рода). Такой тип фазовых переходов носит название фазового перехода типа. Примерами таких переходов являются переход жидкого гелия из сверхтекучего состояния в нормальное, переход в точке Кюри для ферромагнетиков, переходы из неупругого состояния в упругое для сплавов и т.д.

Термодинамическое условие химического равновесия

Термодинамическим условием равновесия процесса, протекающего в изобарно-изотермических условиях, является равенство нулю изменения энергии Гиббса (D r G (Т )=0). При протекании реакции n а A + n b B = n с C + n d D

изменение стандартной энергии Гиббса равно˸

D r G 0 T =(n c ×D f G 0 C + n d ×D f G 0 D )–(n a ×D f G 0 A + n b ×D f G 0 B ).

Данное выражение соответствует идеальному процессу, в котором концентрации реагирующих веществ равны единице и неизменны в ходе реакции. В ходе реальных процессов концентрации реагентов меняются˸ концентрация исходных веществ уменьшается, а продуктов реакции увеличивается. С учетом концентрационной зависимости энергии Гиббса (см. п. 1. 3. 4) её изменение в ходе реакции равно˸

D r G T =–

=

=(n c ×D f G 0 C + n d ×D f G 0 D )–(n a ×D f G 0 A + n b ×D f G 0 B ) +

+ R ×T ×(n c ×lnC C + n d ×lnC D –n a ×lnC A –n b ×lnC B )

D r G T =D r G 0 T + R ×T × ,

где – безразмерная концентрация i -го вещества; X i – мольная доля i -го вещества; p i – парциальное давление i -го вещества; р 0 = =1,013×10 5 Па – стандартное давление; с i – молярная концентрация i -го вещества; с 0 =1 моль/л – стандартная концентрация.

В состоянии равновесия

D r G 0 T + R×T × = 0,

Величина К 0 называется стандартной (термодинамичской) константой равновесия реакции. Таким образом при определенной температуре Т в результате протекания прямой и обратной реакции в системе устанавливается равновесие при определенных концентрациях реагирующих веществ – равновесных концентрациях (С i ) р . Величины равновесных концентраций определяются значением константы равновесия, которая является функцией температуры, и зависит от энтальпии (D r Н 0) и энтропии (D r S 0) реакции˸

D r G 0 T + R ×T ×lnK 0 = 0,

поскольку D r G 0 T =D r Н 0 T – Т ×D r S 0 T ,

Если известны величины энтальпии (D r Н 0 T ) и энтропии (D r S 0 T ) или D r G 0 T реакции, то можно вычислить значение стандартной константы равновесия.

Константа равновесия реакции характеризует идеальные газовые смеси и растворы. Межмолекулярные взаимодействия в реальных газах и растворах приводят к отклонению расчетных величин констант равновесия от реальных. Для учета этого вместо парциальных давлений компонентов газовых смесей используется их фугитивность, а вместо концентрации веществ в растворах их активность. Фугитивность i -го компонента связана с ᴇᴦο парциальным давлением соотношением f i =g i ×p i , где g i – коэффициент фугитивности.Активность и концентрация компонента связаны соотношением а i =g i ×С i , где g i – коэффициент активности.

Необходимо отметить, что в достаточно широкой области давлений и температур газовые смеси можно считать идеальными и проводить расчёты равновесного состава газовой смеси, считая коэффициент фугитивности g i @ 1.В случае жидких растворов, особенно растворов электролитов, коэффициенты активности их компонентов могут значительно отличаться от единицы (g i ¹ 1) и для расчета равновесного состава необходимо использовать активности.

Термодинамическое условие химического равновесия - понятие и виды. Классификация и особенности категории "Термодинамическое условие химического равновесия" 2015, 2017-2018.

Для наглядного отображения условий равновесия следует исходить из простой механической модели, которая смотря по изменению потенциальной энергии в зависимости от положения тела, обнаруживает три состояния равновесия:
1. Стабильное равновесие.
2. Лабильное (неустойчивое) равновесие.
3. Метастабильное равновесие.
На модели спичечной коробки становится ясно, что центр тяжести стоящей на ребре коробки (метастабильное равновесие) должен быть лишь приподнят для того, чтобы через лабильное состояние коробка упала на широкую сторону, т.е. в механически стабильное состояние равновесия, которое отображает состояние наименьшей потенциальной энергии (рис. 9.1.1).

Термическое равновесие характеризуется отсутствием температурных градиентов в системе. Химическое равновесие имеет место в том случае, когда между двумя веществами не происходит результирующая реакция, вызывающая изменение, т.е. все реакции проходят в прямом и обратном направлениях одинаково быстро.
Термодинамическое равновесие существует, если в системе выполняют механические, термические и химические условия равновесия. Это происходит, когда свободная энергия имеет минимум. При постоянном давлении, как вообще принято в металлургии, в качестве свободной энергии следует принимать свободную энергию Гиббса С, называемую свободной энтальпией:

При этом H есть энтальпия, или теплосодержание, или сумма внутренней энергии E и энергии вытеснения pV с давлением р и объемом V в соответствии с

Предполагая постоянный объем V, можно применить свободную энергию Гельмгольца F:

Из этих соотношений получается, что равновесное состояние характеризуется экстремальными значениями. Это значит, что свободная энергия Гиббса минимальна. Из уравнения (9.1.1) вытекает, что свободная энергия Гиббса определяется двумя составляющими, а именно энтальпией, или теплосодержанием H и энтропией S. Этот факт существен для понимания температурной зависимости существования различных фаз.
Поведение свободной энергии Гиббса при изменении температуры различно для веществ, находящихся в газообразной, жидкой или твердой фазе. Это означает, что в зависимости от температуры для определенной фазы (что равнозначно агрегатному состоянию) свободная энергия Гиббса минимальна. Таким образом, в зависимости от температуры в стабильном равновесии всегда будет та фаза, свободная энергия Гиббса которой при рассматриваемой температуре является соответственно самой низкой (рис. 9.1.2).
Факт, что свободная энергия Гиббса составляется из энтальпии и энтропии, становится ясным на примере температурной зависимости зон существования различных модификаций олова. Так, тетрагональное (белое) β-олово стабильно при температуре >13 °C, кубическое, подобное решетке алмаза (серое) α-олово существует в стабильном равновесии ниже температуры 13 °C (аллотропия).

Если при нормальных условиях 25 °C и 1 бар содержание теплоты стабильной β-фазы принимается за 0, то для серого олова получается содержание теплоты 2 кДж/моль. По содержанию теплоты при температуре 25 °C β-олово должно было бы превратиться при освобождении 2 кДж/моль в α-олово при условии, что система с меньшим содержанием теплоты должна быть стабильной. Фактически такого превращения не происходит, так как здесь стабильность фазы обеспечена увеличением амплитуды энтропии.
Благодаря увеличению энтропии при превращении α-олова в β-олово при нормальных условиях увеличение энтальпии компенсируется с излишком, так что свободная энергия Гиббса C=H-TS для модификации белого β-олова фактически выполняет условие минимума.
Так же, как энергия, аддитивно ведет себя энтропия системы, т.е. вся энтропия системы образуется из суммы отдельных энтропий. Энтропия является параметром состояния и, таким образом, может характеризовать состояние системы.
Всегда справедливо

где Q - тепло, подведенное к системе.
Для обратимых процессов имеет значение знак равенства. Для адиабатически изолированной системы dQ=0, таким образом, dS>0. Статистически энтропию можно наглядно изобразить тем, что при смешивании частиц, которые не обнаруживают равномерного заполнения пространства (как, например, при смешении газов), наиболее вероятно состояние гомогенного распределения, т.е. максимально беспорядочное распределение. Этим выражается энтропия S как мера произвольного распределения в системе и определяется как логарифм вероятности:

где k - постоянная Больцмана; w - вероятность распределения, например, двух видов молекул газа.

17.01.2020

Имеющие литую изоляцию обмоток сухие трансформаторы с мощностью от двадцати пяти до трех тысяч ста пятидесяти киловатт*ампер и классов напряжения до десяти киловатт...

17.01.2020

Выполнение гидроизоляционных работ – потребность, которая порой возникает при строительстве газо-, нефте- и других трубопроводов. От негативного воздействия внешних...

17.01.2020

Сварочные работы считаются опасными для здоровья. Зрение при производственных травмах находится в зоне повышенного риска....

16.01.2020

Покупка складского погрузчика не относится к простым процессам. Выбор необходимо осуществлять на основании сразу нескольких критериев. Чтобы не совершить ошибку,...

15.01.2020

Плюсы энергонезависимой системы заключаются в том что, при ее использовании не стоит переживать об отключении электроэнергии, данная система будет работать автономно и...

15.01.2020

Нынче экзотическая, легкая бамбуковая мебель используется в различных стилях интерьера. Особенно выгодно бамбук смотрится в африканском, японском, экологическом и кантри...

13.01.2020

Профнастил – исключительно универсальный материал. Ухода он практически не требует, смотрится – привлекательно, в монтаже очень прост, долговечен и надежен. Богатый...

13.01.2020

На сегодняшний день на рынке большим спросом пользуется разнообразная продукция из нержавеющего стального сырья. Подобная востребованность в настоящий момент является...

13.01.2020

Существуют различные типы ремонта квартир. Дабы вы не путались в определениях, когда объясняете сотрудникам подрядной организации свои желания, для начала необходимо...