Как определять решетки в химии. Г.и.малышева, учитель химии новинской средней школы (п

Большинство твёрдых веществ имеет кристаллическое строение, которое характеризуется строго определённым расположением частиц . Если соединить частицы условными линиями, то получится пространственный каркас, называемый кристаллической решёткой . Точки, в которых размещены частицы кристалла, называют узлами решётки . В узлах воображаемой решётки могут находиться атомы , ионы или молекулы .

В зависимости от природы частиц, расположенных в узлах, и характера связи между ними различают четыре типа кристаллических решёток: ионную , металлическую , атомную и молекулярную .

Ионными называют решётки, в узлах которых находятся ионы.

Их образуют вещества с ионной связью. В узлах такой решётки располагаются положительные и отрицательные ионы, связанные между собой электростатическим взаимодействием.

Ионные кристаллические решётки имеют соли , щёлочи , оксиды активных металлов . Ионы могут быть простые или сложные. Например, в узлах кристаллической решётки хлорида натрия находятся простые ионы натрия Na + и хлора Cl − , а в узлах решётки сульфата калия чередуются простые ионы калия K + и сложные сульфат-ионы S O 4 2 − .

Связи между ионами в таких кристаллах прочные. Поэтому ионные вещества твёрдые , тугоплавкие , нелетучие . Такие вещества хорошо растворяются в воде .

Кристаллическая решётка хлорида натрия

Кристалл хлорида натрия

Металлическими называют решётки, которые состоят из положительных ионов и атомов металла и свободных электронов.

Их образуют вещества с металлической связью. В узлах металлической решётки находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы, отдавая свои внешние электроны в общее пользование).

Такие кристаллические решётки характерны для простых веществ металлов и сплавов .

Температуры плавления металлов могут быть разными (от \(–37\) °С у ртути до двух-трёх тысяч градусов). Но все металлы имеют характерный металлический блеск , ковкость , пластичность , хорошо проводят электрический ток и тепло .

Металлическая кристаллическая решётка

Металлические изделия

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, соединённые ковалентными связями.

Такой тип решётки имеет алмаз - одно из аллотропных видоизменений углерода. К веществам с атомной кристаллической решёткой относятся графит , кремний , бор и германий , а также сложные вещества, например, карборунд SiC и кремнезём , кварц , горный хрусталь , песок , в состав которых входит оксид кремния(\(IV\)) Si O 2 .

Таким веществам характерны высокая прочность и твёрдость . Так, алмаз является самым твёрдым природным веществом. У веществ с атомной кристаллической решёткой очень высокие температуры плавления и кипения . Например, температура плавления кремнезёма - \(1728\) °С, а у графита она выше - \(4000\) °С. Атомные кристаллы практически нерастворимы .

Кристаллическая решётка алмаза

Алмаз

Молекулярными называют решётки, в узлах которых находятся молекулы, связанные слабым межмолекулярным взаимодействием.

Несмотря на то, что внутри молекул атомы соединены очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому молекулярные кристаллы имеют небольшую прочность и твёрдость , низкие температуры плавления и кипения . Многие молекулярные вещества при комнатной температуре представляют собой жидкости и газы . Такие вещества летучи . Например, кристаллические иод и твёрдый оксид углерода(\(IV\)) («сухой лёд») испаряются, не переходя в жидкое состояние. Некоторые молекулярные вещества имеют запах .

Такой тип решётки имеют простые вещества в твёрдом агрегатном состоянии: благородные газы с одноатомными молекулами (He , Ne , Ar , Kr , Xe , Rn ), а также неметаллы с двух- и многоатомными молекулами ( H 2 , O 2 , N 2 , Cl 2 , I 2 , O 3 , P 4 , S 8).

Молекулярную кристаллическую решётку имеют также вещества с ковалентными полярными связями: вода - лёд , твёрдые аммиак , кислоты , оксиды неметаллов . Большинство органических соединений тоже представляют собой молекулярные кристаллы (нафталин , сахар , глюкоза ).

Вещество, как вам известно, может существовать в трёх агрегатных состояниях: газообразном, жидком и твёрдом (рис. 70). Например, кислород, который при обычных условиях представляет собой газ, при температуре -194 °С превращается в жидкость голубого цвета, а при температуре -218,8 °С затвердевает в снегообразную массу, состоящую из кристаллов синего цвета.

Рис. 70.
Агрегатные состояния воды

Твёрдые вещества делят на кристаллические и аморфные.

Аморфные вещества не имеют чёткой температуры плавления - при нагревании они постепенно размягчаются и переходят в текучее состояние. К аморфным веществам относится большинство пластмасс (например, полиэтилен), воск, шоколад, пластилин, различные смолы и жевательные резинки (рис. 71).

Рис. 71.
Аморфные вещества и материалы

Кристаллические вещества характеризуются правильным расположением составляющих их частиц в строго определённых точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решёткой. Точки, в которых размещены частицы кристалла, называют узлами решётки.

В узлах воображаемой кристаллической решётки могут находиться одноатомные ионы, атомы, молекулы. Эти частицы совершают колебательные движения. С повышением температуры размах этих колебаний возрастает, что приводит, как правило, к тепловому расширению тел.

В зависимости от типа частиц, расположенных в узлах кристаллической решётки, и характера связи между ними различают четыре типа кристаллических решёток: ионные, атомные, молекулярные и металлические (табл. 6).

Таблица 6
Положение элементов в Периодической системе Д. И. Менделеева и типы кристаллических решёток их простых веществ

Простые вещества, образованные элементами, не представленными в таблице, имеют металлическую решётку.

Ионными называют кристаллические решётки, в узлах которых находятся ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы Na + , Cl - , так и сложные , ОН - . Следовательно, ионные кристаллические решётки имеют соли, основания (щёлочи), некоторые оксиды. Например, кристалл хлорида натрия построен из чередующихся положительных ионов Na + и отрицательных Сl - , образующих решётку в форме куба (рис. 72). Связи между ионами в таком кристалле очень прочны. Поэтому вещества с ионной решёткой обладают сравнительно высокой твёрдостью и прочностью, они тугоплавки и нелетучи.

Рис. 72.
Ионная кристаллическая решётка (хлорид натрия)

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы. В таких решётках атомы соединены между собой очень прочными ковалентными связями.

Рис. 73.
Атомная кристаллическая решётка (алмаз)

Такой тип кристаллической решётки имеет алмаз (рис. 73) - одно из аллотропных видоизменений углерода. Огранённые и отшлифованные алмазы называют бриллиантами. Их широко применяют в ювелирном деле (рис. 74).

Рис. 74.
Две императорские короны с алмазами:
а - корона Британской империи; б - Большая императорская корона Российской империи

К веществам с атомной кристаллической решёткой относятся кристаллические бор, кремний и германий, а также сложные вещества, например такие, как кремнезем, кварц, песок, горный хрусталь, в состав которых входит оксид кремния (IV) SiO 2 (рис. 75).

Рис. 75.
Атомная кристаллическая решётка (оксид кремния (IV))

Большинство веществ с атомной кристаллической решёткой имеют очень высокие температуры плавления (например, у алмаза она свыше 3500 °С, у кремния - 1415 °С, у кремнезёма - 1728 °С), они прочны и тверды, практически нерастворимы.

Молекулярными называют кристаллические решётки, в узлах которых располагаются молекулы. Химические связи в этих молекулах могут быть и ковалентными полярными (хлороводород НСl, вода Н 2 0), и ковалентными неполярными (азот N 2 , озон 0 3). Несмотря на то что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому вещества с молекулярными кристаллическими решётками имеют малую твёрдость, низкие температуры плавления, летучи.

Примерами веществ с молекулярными кристаллическими решётками являются твёрдая вода - лёд, твёрдый оксид углерода (IV) С) 2 - «сухой лёд» (рис. 76), твёрдые хлороводород НСl и сероводород H 2 S, твёрдые простые вещества, образованные одно- (благородные газы: гелий, неон, аргон, криптон), двух- (водород Н 2 , кислород O 2 , хлор Сl 2 , азот N 2 , иод 1 2), трёх- (озон O 3), четырёх- (белый фосфор Р 4), восьмиатомными (сера S 7) молекулами. Большинство твёрдых органических соединений имеют молекулярные кристаллические решётки (нафталин, глюкоза, сахар).

Рис. 76.
Молекулярная кристаллическая решётка (углекислый газ)

Вещества с металлической связью имеют металлические кристаллические решётки (рис. 77). В узлах таких решёток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны в общее пользование). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, металлический блеск.

Рис. 77.
Металлическая кристаллическая решётка (железо)

Лабораторный опыт № 13
Ознакомление с коллекцией веществ с разным типом кристаллической решётки. Изготовление моделей кристаллических решёток

    Ознакомьтесь с коллекцией выданных вам образцов веществ. Запишите их формулы, охарактеризуйте физические свойства и на их основе определите тип кристаллической решётки.

    Соберите модель одной из кристаллических решёток.

Для веществ, имеющих молекулярное строение, справедлив открытый французским химиком Ж. Л. Прустом (1799-1803) закон постоянства состава. В настоящее время этот закон формулируют так:

Закон Пруста - один из основных законов химии. Однако для веществ немолекулярного строения, например ионного, этот закон не всегда справедлив.

Ключевые слова и словосочетания

  1. Твёрдое, жидкое и газообразное состояния вещества.
  2. Твёрдые вещества: аморфные и кристаллические.
  3. Кристаллические решётки: ионные, атомные, молекулярные и металлические.
  4. Физические свойства веществ с различными типами кристаллических решёток.
  5. Закон постоянства состава.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. В каком агрегатном состоянии будет находиться кислород при -205 °С?
  2. Вспомните произведение А. Беляева «Продавец воздуха» и охарактеризуйте свойства твёрдого кислорода, используя его описание, приведённое в книге.
  3. К какому типу веществ (кристаллические или аморфные) относятся пластмассы? Какие свойства пластмасс лежат в основе их промышленного применения?
  4. К какому типу относится кристаллическая решетка алмаза? Перечислите характерные для алмаза физические свойства.
  5. К какому типу относится кристаллическая решетка иода? Перечислите характерные для иода физические свойства.
  6. Почему температура плавления металлов изменяется в очень широких пределах? Для подготовки ответа на этот вопрос используйте дополнительную литературу.
  7. Почему изделие из кремния при ударе раскалывается на кусочки, а изделие из свинца только расплющивается? В каком из указанных случаев происходит разрушение химической связи, а в каком - нет? Почему?

Молекулярное и немолекулярное строение веществ. Строение вещества

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества. По типу связи различают вещества молекулярного и немолекулярного строения . Вещества, состоящие из молекул, называются молекулярными веществами . Связи между моле­кулами в таких веществах очень слабые, намно­го слабее, чем между атомами внутри молекулы, и уже при сравнительно низких температурах они разрываются - вещество превращается в жид­кость и далее в газ (возгонка йода). Температуры плавления и кипения веществ, состоящих из мо­лекул, повышаются с увеличением молекулярной массы. К молекулярным веществам относятся веще­ства с атомной структурой (C, Si, Li, Na, K, Cu, Fe, W), среди них есть металлы и неметаллы. К веществам немолекулярного строения отно­сятся ионные соединения. Таким строением обла­дает большинство соединений металлов с неметал­лами: все соли (NaCl, K 2 SO 4), некоторые гидриды (LiH) и оксиды (CaO, MgO, FeO), основания (NaOH, KOH). Ионные (немолекулярные) вещества имеют высокие температуры плавления и кипения.


Твердые вещества: аморфные и кристаллические

Твердые вещества делятся на кристаллические и аморфные .

Аморфные вещества не имеют четкой температуры плавления - при нагревании они постепенно размягчаются и переходят в текучее состояние. В аморфном состоянии, например, находятся пластилин и различные смолы.

Кристаллические вещества характеризуются правильным расположением тех частиц, из которых они состоят: атомов, молекул и ионов - в строго определенных точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решеткой. Точки, в которых размещены частицы кристалла, называют узлами решетки. В зависимости от типа частиц, расположенных в узлах кристаллической решетки, и характера связи между ними, различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Ионными называют кристаллические решетки , в узлах которых находятся ионы. Их образуют ве­щества с ионной связью, которой могут быть свя­заны как простые ионы Na+, Cl — , так и сложные SO 4 2- , OH — . Следовательно, ионными кристалличе­скими решетками обладают соли, некоторые оксиды и ги­дроксиды металлов. Напри­мер, кристалл хлорида натрия построен из чередующихся положительных ионов Na + и отрицательных Cl — , образующих решетку в форме куба. Связи между ионами в таком кристалле очень устойчивы. Поэтому вещества с ионной решеткой отличаются сравнительно высокой твердостью и прочностью, они тугоплавки и нелетучи.

Кристаллическая решетка — а) и аморфная решетка — б).


Кристаллическая решетка — а) и аморфная решетка — б).

Атомные кристаллические решетки

Атомными называют кристаллические решетки, в узлах которых находятся отдельные атомы. В таких решетках атомы соединены между собой очень прочными ковалентными связями . Примером веществ с таким типом кристаллических решеток может служить алмаз - одно из аллотропных видоизменений углерода. Большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (например, у алмаза она свыше 3500 °С), они прочны и тверды, практически нерастворимы.



Молекулярные кристаллические решетки

Молекулярными называют кристаллические решетки, в узлах которых располагаются молекулы. Химические связи в этих молекулах могут быть и полярными (HCl, H 2 O), и неполярными (N 2 , O 2). Несмотря на то, что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения . По­этому вещества с молекуляр­ными кристаллическими ре­шетками имеют малую твер­дость, низкие температуры плавления, летучи. Большинство твердых ор­ганических соединений имеют молекулярные кристалличе­ские решетки (нафталин, глю­коза, сахар).


Молекулярная кристаллическая решетка(углекислый газ)

Металлические кристаллические решетки

Вещества с металлической связью имеют металлические кристаллические решетки. В узлах таких решеток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны «в общее пользование»). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, характерный металлический блеск.

Шпаргалки

Связи между ионами в кристалле очень прочные и устойчивые.Поэтому вещества с ионной решёткой обладают высокой твёрдостью и прочностью, тугоплавки и нелетучи.

Вещества с ионной кристаллической решеткой обладают следующими свойствами:

1. Относительно высокой твердостью и прочностю;

2. Хрупкостью;

3. Термостойкостью;

4. Тугоплавкостью;

5. Нелетучестью.

Примеры: соли – хлорид натрия, карбонат калия, основания – гидрооксид кальция, гидрооксид натрия.

4. Механизм образования ковалентной связи (обменный и донорно-акцепторный).

Каждый атом стремится завершить свой внешний электронный уровень, чтобы уменьшить потенциальную энергию. Поэтому ядро одного атома притягивается к себе электронную плотность другого атома и наоборот, происходит наложение электронных облаков двух соседних атомов.

Демонстрация аппликации и схемы образования ковалентной неполярной химической связи в молекуле водорода. (Учащиеся записывают и зарисовывают схемы).

Вывод: Связь между атомами в молекуле водорода осуществляется за счет общей электронной пары. Такая связь называется ковалентной.

Какую связь называют ковалентной неполярной? (Учебник стр. 33).

Составление электронных формул молекул простых веществ неметаллов:

CI CI - электронная формула молекулы хлора,

CI -- CI - структурная формула молекула хлора.

N N - электронная формула молекулы азота,

N ≡ N - структурная формула молекулы азота.

Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи.

Но молекулы могут образовывать и разные атомы неметаллов и в этом случае общая электронная пара будет смещаться к более электроотрицательному химическому элементу.

Изучить материал учебника на стр. 34

Вывод: Металлы имеют более низкое значение электроотрицательности, чем неметаллы. И между ними она сильно отличается.

Демонстрация схемы образования полярной ковалентной связи в молекуле хлороводорода.

Общая электронная пара смещена к хлору, как более электроотрицательному. Значит это ковалентная связь. Она образована атомами, электроотрицательности которых несильно отличаются, поэтому это ковалентная полярная связь.



Составление электронных формул молекул йодоводорода и воды:

H J - электронная формула молекулы йодоводорода,

H → J - структурная формула молекулы йодоводорода.

H O - электронная формула молекулы воды,

Н →О - структурная формула молекулы воды.

Самостоятельная работа с учебником: выписать определение электроотрицательности.

Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками

Самостоятельная работа с учебником.

Вопросы для самоконтроля

Атом, какого химического элемента имеет заряд ядра +11

– Записать схему электронного строения атома натрия

– Внешний слой завершен?

– Как добиться завершения заполнения электронного слоя?

– Составить схему отдачи электрона

– Сравнить строение атома и иона натрия

Сравнить строение атома и иона инертного газа неона.

Определить атом, какого элемента с количеством протонов 17.

– Запишите схему электронного строения атома.

– Слой завершен? Как этого добиться.

– Составить схему завершения электронного слоя хлора.

Задание по группам:

1-3 группа: Cоставьте электронные и структурные формулы молекул веществ и укажите тип связи Br 2 ; NH 3 .

4-6 группы: Cоставьте электронные и структурные формулы молекул веществ и укажите тип связи F 2 ; HBr.

Два ученика работают у дополнительной доски с этим же заданием для образца к самопроверке.

Устный опрос.

1. Дайте определение понятия «электроотрицательность».

2. От чего зависит электроотрицательность атома?

3. Как изменяется электроотрицательность атомов элементов в периодах?

4. Как изменяется электроотрицательность атомов элементов в главных подгруппах?

5. Сравните электроотрицательность атомов металлов и неметаллов. Отличаются ли способы завершения внешнего электронного слоя, характерные для атомов металлов и неметаллов? Каковы причины этого?



7. Какие химические элементы способны отдавать электроны, принимать электроны?

Что происходит между атомами при отдаче и принятии электронов?

Как называют частицы, образовавшиеся из атома в результате отдачи или присоединения электронов?

8. Что произойдет при встрече атомов металла и неметалла?

9. Как образуется ионная связь?

10. Химическая связь, образуемая за счет образования общих электронных пар называется …

11. Ковалентная связь бывает … и …

12. В чем сходство ковалентной полярной и ковалентной неполярной связи? От чего зависит полярность связи?

13. В чем различие ковалентной полярной и ковалентной неполярной связи?


ПЛАН ЗАНЯТИЯ № 8

Дисциплина: Химия.

Тема: Металлическая связь. Агрегатные состояния веществ и водородная связь.

Цель занятия: Сформировать понятие об химических связях на примере металлической связи. Добиться понимания механизма образования связи.

Планируемые результаты

Предметные: формировании кругозора и функциональной грамотности человека для решения практических задач; умение обрабатывать, объяснять результаты; готовность и способность применять методы познания при решении практических задач;

Метапредметные: использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов в профессиональной сфере;

Личностные: умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

Норма времени: 2 часа

Вид занятия: Лекция.

План занятия:

1. Металлическая связь. Металлическая кристаллическая решетка и металлическая химическая связь.

2. Физические свойства металлов.

3. Агрегатные состояния веществ. Переход вещества из одного агрегатного состояния в другое.

4. Водородная связь

Оснащение: Периодическая система химических элементов, кристаллическая решетка, раздаточный материал.

Литература:

1. Химия 11 класс: учеб. для общеобразоват. организаций Г.Е. Рудзитис, Ф.Г. Фельдман. – М.:Просвещение, 2014. -208 с.: ил..

2. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов. – 5 - изд., стер. – М.: Издательский центр «Академия», 2017. – 272с., с цв. ил.

Преподаватель: Тубальцева Ю.Н.

Как мы уже знаем, вещество может существовать в трех агрегатных состояниях: газообразном , твердом и жидком . Кислород, который при обычных условиях находится в газообразном состоянии, при температуре -194° С преобразуется в жидкость голубоватого цвета, а при температуре -218,8° С превращается в снегообразную массу с кристаллами синего цвета.

Температурный интервал существования вещества в твердом состоянии определяется температурами кипения и плавления. Твердые вещества бывают кристаллическими и аморфными .

У аморфных веществ нет фиксированной температуры плавления – при нагревании они постепенно размягчаются и переходят в текучее состояние. В таком состоянии, например, находятся различные смолы, пластилин.

Кристаллические вещества отличаются закономерным расположением частиц, из которых они состоят: атомов, молекул и ионов, – в строго определенных точках пространства. Когда эти точки соединяются прямыми линиями, создается пространственный каркас, его называют кристаллической решеткой. Точки, в которых находятся частицы кристалла, называют узлами решетки.

В узлах воображаемой нами решетки могут находиться ионы, атомы и молекулы. Эти частицы совершают колебательные движения. Когда температура увеличивается, размах этих колебаний тоже возрастает, что приводит к тепловому расширению тел.

В зависимости от разновидности частиц, находящихся в узлах кристаллической решетки, и характера связи между ними различают четыре типа кристаллических решеток: ионные , атомные , молекулярные и металлические .

Ионными называют такие кристаллические решетки, в узлах которых расположены ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы Na+, Cl- , так и сложные SO24-, OH-. Таким образом, ионные кристаллические решетки имеют соли, некоторые оксиды и гидроксилы металлов, т.е. те вещества, в которых существует ионная химическая связь. Рассмотрим кристалл хлорида натрия, он состоит из положительно чередующихся ионов Na+ и отрицательных CL-, вместе они образуют решетку в виде куба. Связи между ионами в таком кристалле чрезвычайно устойчивы. Из-за этого вещества с ионной решеткой обладают сравнительно высокой прочностью и твердостью, они тугоплавки и нелетучи.

Атомными кристаллическими решетками называют такие кристаллические решетки, в узлах которых находятся отдельные атомы. В подобных решетках атомы соединяются между собой очень крепкими ковалентными связями. К примеру, алмаз – одно из аллотропных видоизменений углерода.

Вещества с атомной кристаллической решеткой не сильно распространены в природе. К ним относятся кристаллический бор, кремний и германий, а также сложные вещества, например такие, в составе которых есть оксид кремния (IV) – SiO 2: кремнезем, кварц, песок, горный хрусталь.

Подавляющее большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (у алмаза она превышает 3500° С), такие вещества прочны и тверды, практически не растворимы.

Молекулярными называют такие кристаллические решетки, в узлах которых расположены молекулы. Химические связи в этих молекулах могут быть также, как полярными (HCl, H 2 0), так и неполярными (N 2 , O 3). И хотя атомы внутри молекукл связаны очень крепкими ковалентными связями, между самими молекулами действует слабые силы межмолекулярного притяжения. Именно поэтому вещества с молекулярными кристаллическими решетками характеризуются малой твердостью, низкой температурой плавления, летучестью.

Примерами таких веществ могут послужить твердая вода – лед, твердый оксид углерода (IV) – «сухой лед», твердые хлороводород и сероводород, твердые простые вещества, образованные одно – (благородные газы), двух – (H 2 , O 2 , CL 2 , N 2 , I 2), трех – (O 3), четырех – (P 4), восьмиатомными (S 8) молекулами. Подавляющее большинство твердых органических соединений обладают молекулярными кристаллическими решетками (нафталин, глюкоза, сахар).

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.