Какой числовой ряд называется упорядоченным. Свойства числовых рядов

1. Если сходится а 1 +а 2 +а 3 +…+а n +…=, то сходится и ряд а m+1 +а m+2 +а m+3 +…, полученный из данного ряда отбрасыванием первых m членов. Этот полученный ряд называется m-ым остатком ряда. И, наоборот: из сходимости m-го остатка ряда вытекает сходимость данного ряда. Т.е. сходимость и расходимость ряда не нарушается, если прибавить или отбросить конечное число его членов.

2 . Если ряд а 1 +а 2 +а 3 +… сходится и его сумма равна S, то ряд Са 1 +Са 2 +…, где С= так же сходится и его сумма равна СS.

3. Если ряды а 1 +а 2 +… и b 1 +b 2 +… сходятся и их суммы равны соответственно S1 и S2, то ряды (а 1 +b 1)+(а 2 +b 2)+(а 3 +b 3)+… и (а 1 -b 1)+(а 2 -b 2)+(а 3 -b 3)+… также сходятся. Их суммы соответственно равны S1+S2 и S1-S2.

4. а). Если ряд сходится, то его n-ый член стремится к 0 при неограниченном возрастании n (обратное утверждение неверно).

- необходимый признак (условие) сходимости ряда .

б). Если
то ряд расходящийся –достаточное условие расходимости ряда .

-ряды такого вида исследуются только по 4 свойству. Это расходящиеся ряды.

Знакоположительные ряды.

Признаки сходимости и расходимости знакоположительных рядов.

Знакоположительные ряды это ряды, все члены которых положительные. Эти признаки сходимости и расходимости мы будем рассматривать для знакоположительных рядов.

1. Первый признак сравнения.

Пусть даны два знакоположительных ряда а 1 +а 2 +а 3 +…+а n +…=(1) иb 1 +b 2 +b 3 +…+b n +…=(2).

Если члены ряда (1) не больше b n и ряд (2) сходится , то и ряд (1) также сходится.

Если члены ряда (1) не меньше соответствующих членов ряда (2), т.е. а n b n и ряд (2) расходится , то и ряд (1) также расходится.

Этот признак сравнения справедлив, если неравенство выполняется не для всех n, а лишь начиная с некоторого.

2. Второй признак сравнения.

Если существует конечный и отличный от нуля предел
, то оба ряда сходятся или расходятся одновременно.

-ряды такого вида расходятся по второму признаку сравнения. Их надо сравнивать с гармоническим рядом.

3. Признак Даламбера.

Если для знакоположительного ряда (а 1 +а 2 +а 3 +…+а n +…=) существует
(1), то ряд сходится, если q<1, расходится, если q>

4. Признак Коши радикальный.

Если для знакоположительного ряда существует предел
(2), то ряд сходится, еслиq<1, расходится, если q>1. Если q=1 то вопрос остается открытым.

5. Признак Коши интегральный.

Вспомним несобственные интегралы.

Если существует предел
. Это есть несобственный интеграл и обозначается
.

Если этот предел конечен, то говорят, что несобственный интеграл сходится. Ряд, соответственно, сходится или расходится.

Пусть ряд а 1 +а 2 +а 3 +…+а n +…=- знакоположительный ряд.

Обозначим a n =f(x) и рассмотрим функцию f(x). Если f(x)- функция положительная, монотонно убывающая и непрерывная, то, если несобственный интеграл сходится, то и данный ряд сходится. И наоборот: если несобственный интеграл расходится, то и ряд расходится.

Если ряд конечен, то он сходится.

Очень часто встречаются ряды
-ряд Дерихле . Он сходится, если p>1, расходится p<1. Гармонический ряд является рядом Дерихле при р=1. Сходимость и расходимость данного ряда легко доказать с помощью интегрального признака Коши.

1. Основные понятия. Пусть дана бесконечная последовательность чисел

Определение. Выражение

где - общий член ряда.

Пример 7.1

Рассмотрим ряд . Здесь - общий член ряда.

Рассмотрим суммы, составленные из конечного числа членов ряда (7.1): , , , ..., , . . . Такие суммы называются частичны­ми суммами ряда. называется -ой частичной суммой ряда. Таким образом, частичная сумма это сумма (конечного числа) слагаемых:

. (7.3)

Последовательность , , , ..., , ... или .называется последовательностью частичных сумм ряда (7.1).

Определение. Если существует конечный предел , то ряд (1.1) называется сходящимся, а число - суммой этого ряда. В этом случае пишут ­

Если последовательность не имеет предела, то ряд (7.1) называется расходящимся. Расходящийся ряд суммы не имеет.

Пример 7.2

Решение

Общий член ряда можно представить в виде

, (n = 1, 2, 3, . . .).

Следовательно, данный ряд сходится, и его сумма равна 1.

Пример 7.3 (геометрическая прогрессия)

Рассмотрим последовательность, каждый член которой, начиная со второго, получается в результате умножения предыдущего члена на одно и то же число:

Иногда сам ряд (7.5) называют геометрической прогрессией.

Частичная сумма ряда (7.5) представляет собой сумму членов геометрической прогрессии и

вычисляется по формуле

. (7.6)

Если , тогда . Следовательно, при ряд (7.5) сходится. Если , тогда . Следовательно, при ряд (7.5) расходится. Если , тогда (7.5) превращается в ряд 1 + 1 + 1 + ... + 1 + ... . Для такого ряда и

Следовательно, при ряд (7.5) расходится.

При рассмотрении рядов, важным является вопрос о сходимости (расходимости). Для решения этого вопроса в примерах 7.1 и 7.2 использовалось определение сходимости. Чаще для этого используются определенные свойства ряда, которые называются признаками сходимости ряда.

Теорема 7.1 (необходимый признак сходимости). Если ряд (7.1) сходится, то его общий член стремится к нулю при неограниченном возрастании , т. е.

Ряд (7.8) называется гармоническим рядом.

Для этого ряда . Однако, никакого вывода о сходимости ряда (7.8) пока сделать нельзя, так как утверждение, обратное теореме 7.1, не является верным.

Покажем, что ряд (7.8) расходится. Это можно установить рассуждениями от противного. Предположим, что ряд (7.8) сходится, и его сумма равна S .Тогда = –

– , что противоречит неравенству

Следовательно, гармонический ряд расходится.

Необходимым признаком можно воспользоваться для установления факта расходимости ряда. Действительно, из теоремы 7.1 следует, что если общий член ряда не стремится к нулю, то ряд расходится.

Пример 7.5

Рассмотрим ряд .

Здесь , . Предел не равен нулю, следовательно, ряд расходится.

Таким образом, если выполняется условие (7.7), вопрос о сходимости ряда (7.1) остается открытым. Ряд может расходиться, а может и сходиться. Для решения этого вопроса могут

быть использованы свойства ряда, из которых следует сходимость этого ряда. Такие свойства называются достаточными признаками сходимости рядов.

Ряды с положительными членами. Рассмотри достаточные признаки сходимости рядов с положительными членами.

Теорема 7.2 .(Признак Даламбера).

положительны :

1) если , ряд (7.1) сходится;

2) если , ряд (7.1) сходится;

Примечание. Ряд (7.1) будет расходиться и в том случае, когда , так как тогда, начиная с некоторого номера N, будет и, значит, не стремится к нулю при .


Пример 7.6

Исследовать на сходимость ряд .

Решение . , , тогда =

Найденный предел меньше единицы. Следовательно, данный ряд сходится.

Пример 7.7

Исследовать на сходимость ряд .

Решение . , , тогда =

= = = = = = = .

Найденный предел больше единицы. Следовательно, данный ряд расходится.

Теорема 7.3 .(Радикальный признак Коши).

Пусть дан ряд (7.1), все члены которого положительны :

и существует предел

, (7.11)

(где обозначение найденного предела). Тогда:

1) если , ряд (7.1) сходится;

2) если , ряд (7.1) сходится;

3) если , рассматриваемый признак не дает ответа на вопрос о сходимости ряда.

Доказательство признака можно найти в .

Пример 7.8

Исследовать на сходимость ряд .

Решение .

Найдем предел (7.11):

Найденный предел больше единицы. Следовательно, данный ряд расходится (теорема 7.3).

Обобщенный гармонический ряд. Обобщенным гармоническим рядом называется ряд вида

Теорема 7.3 . (теорема Лейбница). Если для ряда (7.13) выполняются два условия:

1) члены ряда по абсо­лютной величине монотонно убывают :

2) общий член ряда стремится к нулю :

то ряд (7.13) сходится.

Доказательство признака можно найти, например, в .

Пример 7.9.

Рассмотрим знакочередующийся ряд

(7.14)

Для этого ряда условия теоремы (7.13) выполнены:

Следовательно, ряд (7.12) сходится.

Следствие из теоремы 7.3. Остаток знакочередующегося ряда (7.13), удов­летворяющего условиям теоремы Лейбница, имеет знак своего первого члена и меньше его по абсолютной величине.

Пример 7.10. Вычислить с точностью до 0,1 сумму сходящегося ряда

В качестве приближенного значения суммы ряда мы должны взять ту частичную сумму , для которой . Согласно следствию, . Следовательно, достаточно положить , т. е. , тогда

Отсюда с точностью до 0,1.

Абсолютная и условная сходимость . Рассмотрим ряд, члены которого имеют произвольные знаки

Отметим, что ряд (7.16) является рядом с положительными членами и для него применимы соответствующие теоремы, приведенные выше.

Теорема 7.4 (Признак абсолютной сходимости). Если сходится ряд (7.16) , то сходится и ряд (7.15).

(Доказательство теоремы можно найти, например, в ).

Определение.

Если сходится ряд (7.16), то соответствующий ряд (7.15) называется абсолютно сходящимся абсолютно сходящим ся.

Может оказаться, что ряд (7.16) расходится, а ряд (7.15) сходится. В этом случае ряд (7.15) называется условно сходящимся .

Отметим, что знакочередующийся ряд (7.13) является частным случаем ряда, члены которого имеют произвольные знаки. Поэтому для исследования знакочередующегося ряда также можно применить теорему 7.5.

Пример 7.11

Решение

Рассмотрим ряд, составленный из абсолютных величин членов данного ряда . Этот ряд сходится, т. к. это обобщенный гармонический ряд (7.12) со значением Следовательно, по признаку абсолютной сходимости (теорема 7.5) исходный ряд сходится абсолютно.

Пример 7.12

Ряд исследовать на сходимость.

Решение

по теореме Лейбница сходится, но ряд, составленный из абсолютных величин членов исходного ряда, расходится (это гармонический ряд). Следовательно, исходный ряд сходится условно.

Данная статья представляет собой структурированную и подробную информацию, которая может пригодиться во время разбора упражнений и задач. Мы рассмотрим тему числовых рядов.

Данная статья начинается с основных определений и понятий. Далее мы стандартные варианты и изучим основные формулы. Для того, чтобы закрепить материал, в статье приведены основные примеры и задачи.

Базовые тезисы

Для начала представим систему: a 1 , a 2 . . . , a n , . . . , где a k ∈ R , k = 1 , 2 . . . .

Для примера, возьмем такие числа, как: 6 , 3 , - 3 2 , 3 4 , 3 8 , - 3 16 , . . . .

Определение 1

Числовой ряд – это сумма членов ∑ a k k = 1 ∞ = a 1 + a 2 + . . . + a n + . . . .

Чтобы лучше понять определение, рассмотрим данный случай, в котором q = - 0 . 5: 8 - 4 + 2 - 1 + 1 2 - 1 4 + . . . = ∑ k = 1 ∞ (- 16) · - 1 2 k .

Определение 2

a k является общим или k –ым членом ряда.

Он выглядит примерно таким образом - 16 · - 1 2 k .

Определение 3

Частичная сумма ряда выглядит примерно таким образом S n = a 1 + a 2 + . . . + a n , в которой n –любое число. S n является n -ой суммой ряда.

Например, ∑ k = 1 ∞ (- 16) · - 1 2 k есть S 4 = 8 - 4 + 2 - 1 = 5 .

S 1 , S 2 , . . . , S n , . . . образуют бесконечную последовательность числового ряда.

Для ряда n –ая сумму находится по формуле S n = a 1 · (1 - q n) 1 - q = 8 · 1 - - 1 2 n 1 - - 1 2 = 16 3 · 1 - - 1 2 n . Используем следующую последовательность частичных сумм: 8 , 4 , 6 , 5 , . . . , 16 3 · 1 - - 1 2 n , . . . .

Определение 4

Ряд ∑ k = 1 ∞ a k является сходящимся тогда, когда последовательность обладает конечным пределом S = lim S n n → + ∞ . Если предела нет или последовательность бесконечна, то ряд ∑ k = 1 ∞ a k называется расходящимся.

Определение 5

Суммой сходящегося ряда ∑ k = 1 ∞ a k является предел последовательности ∑ k = 1 ∞ a k = lim S n n → + ∞ = S .

В данном примере lim S n n → + ∞ = lim 16 3 т → + ∞ · 1 - 1 2 n = 16 3 · lim n → + ∞ 1 - - 1 2 n = 16 3 , ряд ∑ k = 1 ∞ (- 16) · - 1 2 k сходится. Сумма равна 16 3: ∑ k = 1 ∞ (- 16) · - 1 2 k = 16 3 .

Пример 1

В качестве примера расходящегося ряда можно привести сумму геометрической прогрессии со знаменателем большем, чем единица: 1 + 2 + 4 + 8 + . . . + 2 n - 1 + . . . = ∑ k = 1 ∞ 2 k - 1 .

n -ая частичная сумма определяется выражением S n = a 1 · (1 - q n) 1 - q = 1 · (1 - 2 n) 1 - 2 = 2 n - 1 , а предел частичных сумм бесконечен: lim n → + ∞ S n = lim n → + ∞ (2 n - 1) = + ∞ .

Еще одим примером расходящегося числового ряда является сумма вида ∑ k = 1 ∞ 5 = 5 + 5 + . . . . В этом случае n -ая частичная сумма может быть вычислена как S n = 5 n . Предел частичных сумм бесконечен lim n → + ∞ S n = lim n → + ∞ 5 n = + ∞ .

Определение 6

Сумма подобного вида как ∑ k = 1 ∞ = 1 + 1 2 + 1 3 + . . . + 1 n + . . . – это гармонический числовой ряд.

Определение 7

Сумма ∑ k = 1 ∞ 1 k s = 1 + 1 2 s + 1 3 s + . . . + 1 n s + . . . , где s –действительное число, является обобщенно гармоническим числовым рядом.

Определения, рассмотренные выше, помогут вам для решения большинства примеров и задач.

Для того, чтобы дополнить определения, необходимо доказать определенные уравнения.

  1. ∑ k = 1 ∞ 1 k – расходящийся.

Действуем методом от обратного. Если он сходится, то предел конечен. Можно записать уравнение как lim n → + ∞ S n = S и lim n → + ∞ S 2 n = S . После определенных действий мы получаем равенство l i m n → + ∞ (S 2 n - S n) = 0 .

Напротив,

S 2 n - S n = 1 + 1 2 + 1 3 + . . . + 1 n + 1 n + 1 + 1 n + 2 + . . . + 1 2 n - - 1 + 1 2 + 1 3 + . . . + 1 n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n

Справедливы следующие неравенства 1 n + 1 > 1 2 n , 1 n + 1 > 1 2 n , . . . , 1 2 n - 1 > 1 2 n . Получаем, что S 2 n - S n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n > 1 2 n + 1 2 n + . . . + 1 2 n = n 2 n = 1 2 . Выражение S 2 n - S n > 1 2 указывает на то, что lim n → + ∞ (S 2 n - S n) = 0 не достигается. Ряд расходящийся.

  1. b 1 + b 1 q + b 1 q 2 + . . . + b 1 q n + . . . = ∑ k = 1 ∞ b 1 q k - 1

Необходимо подтвердить, что сумма последовательности чисел сходится при q < 1 , и расходится при q ≥ 1 .

Согласно приведенным выше определениям, сумма n членов определяется согласно формуле S n = b 1 · (q n - 1) q - 1 .

Если q < 1 верно

lim n → + ∞ S n = lim n → + ∞ b 1 · q n - 1 q - 1 = b 1 · lim n → + ∞ q n q - 1 - lim n → + ∞ 1 q - 1 = = b 1 · 0 - 1 q - 1 = b 1 q - 1

Мы доказали, что числовой ряд сходится.

При q = 1 b 1 + b 1 + b 1 + . . . ∑ k = 1 ∞ b 1 . Суммы можно отыскать с использованием формулы S n = b 1 · n , предел бесконечен lim n → + ∞ S n = lim n → + ∞ b 1 · n = ∞ . В представленном варианте ряд расходится.

Если q = - 1 , то ряд выглядит как b 1 - b 1 + b 1 - . . . = ∑ k = 1 ∞ b 1 (- 1) k + 1 . Частичные суммы выглядят как S n = b 1 для нечетных n , и S n = 0 для четных n . Рассмотрев данный случай, мы удостоверимся, что предела нет и ряд является расходящимся.

При q > 1 справедливо lim n → + ∞ S n = lim n → + ∞ b 1 · (q n - 1) q - 1 = b 1 · lim n → + ∞ q n q - 1 - lim n → + ∞ 1 q - 1 = = b 1 · ∞ - 1 q - 1 = ∞

Мы доказали, что числовой ряд расходится.

  1. Ряд ∑ k = 1 ∞ 1 k s сходится, если s > 1 и расходится, если s ≤ 1 .

Для s = 1 получаем ∑ k = 1 ∞ 1 k , ряд расходится.

При s < 1 получаем 1 k s ≥ 1 k для k , натурального числа. Так как ряд является расходящимся ∑ k = 1 ∞ 1 k , то предела нет. Следуя этому, последовательность ∑ k = 1 ∞ 1 k s неограниченна. Делаем вывод, что выбранный ряд расходится при s < 1 .

Необходимо предоставить доказательства, что ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 .

Представим S 2 n - 1 - S n - 1:

S 2 n - 1 - S n - 1 = 1 + 1 2 s + 1 3 s + . . . + 1 (n - 1) s + 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s - - 1 + 1 2 s + 1 3 s + . . . + 1 (n - 1) s = 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s

Допустим, что 1 (n + 1) s < 1 n s , 1 (n + 2) s < 1 n s , . . . , 1 (2 n - 1) s < 1 n s , тогда S 2 n - 1 - S n - 1 = 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s < < 1 n s + 1 n s + . . . + 1 n s = n n s = 1 n s - 1

Представим уравнение для чисел, которые являются натуральными и четными n = 2: S 2 n - 1 - S n - 1 = S 3 - S 1 = 1 2 s + 1 3 s < 1 2 s - 1 n = 4: S 2 n - 1 - S n - 1 = S 7 - S 3 = 1 4 s + 1 5 s + 1 6 s + 1 7 s < 1 4 s - 1 = 1 2 s - 1 2 n = 8: S 2 n - 1 - S n - 1 = S 15 - S 7 = 1 8 s + 1 9 s + . . . + 1 15 s < 1 8 s - 1 = 1 2 s - 1 3 . . .

Получаем:

∑ k = 1 ∞ 1 k s = 1 + 1 2 s + 1 3 s + 1 4 s + . . . + 1 7 s + 1 8 s + . . . + 1 15 s + . . . = = 1 + S 3 - S 1 + S 7 - S 3 + S 15 + S 7 + . . . < < 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . .

Выражение 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . . – это сумма геометрической прогрессии q = 1 2 s - 1 . Согласно исходным данным при s > 1 , то 0 < q < 1 . Получаем, ∑ k = 1 ∞ < 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . . = 1 1 - q = 1 1 - 1 2 s - 1 . Последовательность ряда при s > 1 увеличивается и ограничивается сверху 1 1 - 1 2 s - 1 . Представим, что есть предел и ряд является сходящимся ∑ k = 1 ∞ 1 k s .

Определение 8

Ряд ∑ k = 1 ∞ a k знакоположителен в том случае , если его члены > 0 a k > 0 , k = 1 , 2 , . . . .

Ряд ∑ k = 1 ∞ b k знакочередующийся , если знаки чисел отличаются. Данный пример представлен как ∑ k = 1 ∞ b k = ∑ k = 1 ∞ (- 1) k · a k или ∑ k = 1 ∞ b k = ∑ k = 1 ∞ (- 1) k + 1 · a k , где a k > 0 , k = 1 , 2 , . . . .

Ряд ∑ k = 1 ∞ b k знакопеременный , так как в нем множество чисел, отрицательных и положительных.

Второй вариант ряд – это частный случай третьего варианта.

Приведем примеры для каждого случая соответственно:

6 + 3 + 3 2 + 3 4 + 3 8 + 3 16 + . . . 6 - 3 + 3 2 - 3 4 + 3 8 - 3 16 + . . . 6 + 3 - 3 2 + 3 4 + 3 8 - 3 16 + . . .

Для третьего варианта также можно определить абсолютную и условную сходимость.

Определение 9

Знакочередующийся ряд ∑ k = 1 ∞ b k абсолютно сходится в том случае, когда ∑ k = 1 ∞ b k также считается сходящимся.

Подробно разберем несколько характерных вариантов

Пример 2

Если ряды 6 - 3 + 3 2 - 3 4 + 3 8 - 3 16 + . . . и 6 + 3 - 3 2 + 3 4 + 3 8 - 3 16 + . . . определяются как сходящиеся, то верно считать, что 6 + 3 + 3 2 + 3 4 + 3 8 + 3 16 + . . .

Определение 10

Знакопеременный ряд ∑ k = 1 ∞ b k считается условно сходящимся в том случае, если ∑ k = 1 ∞ b k – расходящийся, а ряд ∑ k = 1 ∞ b k считается сходящимся.

Пример 3

Подробно разберем вариант ∑ k = 1 ∞ (- 1) k + 1 k = 1 - 1 2 + 1 3 - 1 4 + . . . . Ряд ∑ k = 1 ∞ (- 1) k + 1 k = ∑ k = 1 ∞ 1 k , который состоит из абсолютных величин, определяется как расходящийся. Этот вариант считается сходящимся, так как это легко определить. Из данного примера мы узнаем, что ряд ∑ k = 1 ∞ (- 1) k + 1 k = 1 - 1 2 + 1 3 - 1 4 + . . . будет считаться условно сходящимся.

Особенности сходящихся рядов

Проанализируем свойства для определенных случаев

  1. Если ∑ k = 1 ∞ a k будет сходится, то и ряд ∑ k = m + 1 ∞ a k также признается сходящимся. Можно отметить, что ряд без m членов также считается сходящимся. В случае, если мы добавляем к ∑ k = m + 1 ∞ a k несколько чисел, то получившийся результат также будет сходящимся.
  2. Если ∑ k = 1 ∞ a k сходится и сумма = S , то сходится и ряд ∑ k = 1 ∞ A · a k , ∑ k = 1 ∞ A · a k = A · S , где A –постоянная.
  3. Если ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k являются сходящимися, суммы A и B тоже, то и ряды ∑ k = 1 ∞ a k + b k и ∑ k = 1 ∞ a k - b k также сходятся. Суммы будут равняться A + B и A - B соответственно.
Пример 4

Определить, что ряд сходится ∑ k = 1 ∞ 2 3 k · k 3 .

Изменим выражение ∑ k = 1 ∞ 2 3 k · k 3 = ∑ k = 1 ∞ 2 3 · 1 k 4 3 . Ряд ∑ k = 1 ∞ 1 k 4 3 считается сходящимся, так как ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 . В соответствии со вторым свойством, ∑ k = 1 ∞ 2 3 · 1 k 4 3 .

Пример 5

Определить, сходится ли ряд ∑ n = 1 ∞ 3 + n n 5 2 .

Преобразуем изначальный вариант ∑ n = 1 ∞ 3 + n n 5 2 = ∑ n = 1 ∞ 3 n 5 2 + n n 2 = ∑ n = 1 ∞ 3 n 5 2 + ∑ n = 1 ∞ 1 n 2 .

Получаем сумму ∑ n = 1 ∞ 3 n 5 2 и ∑ n = 1 ∞ 1 n 2 . Каждый ряд признается сходящимся согласно свойству. Так, как ряды сходятся, то исходный вариант тоже.

Пример 6

Вычислить, сходится ли ряд 1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . и вычислить сумму.

Разложим исходный вариант:

1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . = = 1 + 1 2 + 1 4 + 1 8 + . . . - 2 · 3 + 1 + 1 3 + 1 9 + . . . = = ∑ k = 1 ∞ 1 2 k - 1 - 2 · ∑ k = 1 ∞ 1 3 k - 2

Каждый ряд сходится, так как является одним из членов числовой последовательности. Согласно третьему свойству, мы можем вычислить, что исходный вариант также является сходящимся. Вычисляем сумму: Первый член ряда ∑ k = 1 ∞ 1 2 k - 1 = 1 , а знаменатель = 0 . 5 , за этим следует, ∑ k = 1 ∞ 1 2 k - 1 = 1 1 - 0 . 5 = 2 . Первый член ∑ k = 1 ∞ 1 3 k - 2 = 3 , а знаменатель убывающей числовой последовательности = 1 3 . Получаем: ∑ k = 1 ∞ 1 3 k - 2 = 3 1 - 1 3 = 9 2 .

Используем выражения, полученные выше, для того, чтобы определить сумму 1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . = ∑ k = 1 ∞ 1 2 k - 1 - 2 · ∑ k = 1 ∞ 1 3 k - 2 = 2 - 2 · 9 2 = - 7

Необходимое условие для определения, является ли ряд сходящимся

Определение 11

Если ряд ∑ k = 1 ∞ a k является сходящимся, то предел его k -ого члена = 0: lim k → + ∞ a k = 0 .

Если мы проверим любой вариант, то нужно не забывать о непременном условии. Если оно не выполняется, то ряд расходится. Если lim k → + ∞ a k ≠ 0 , то ряд расходящийся.

Следует уточнить, что условие важно, но не достаточно. Если равенство lim k → + ∞ a k = 0 выполняется, то это не гарантирует, что ∑ k = 1 ∞ a k является сходящимся.

Приведем пример. Для гармонического ряда ∑ k = 1 ∞ 1 k условие выполняется lim k → + ∞ 1 k = 0 , но ряд все равно расходится.

Пример 7

Определить сходимость ∑ n = 1 ∞ n 2 1 + n .

Проверим исходное выражение на выполнение условия lim n → + ∞ n 2 1 + n = lim n → + ∞ n 2 n 2 1 n 2 + 1 n = lim n → + ∞ 1 1 n 2 + 1 n = 1 + 0 + 0 = + ∞ ≠ 0

Предел n -ого члена не равен 0 . Мы доказали, что данный ряд расходится.

Как определить сходимость знакоположительного ряда.

Если постоянно пользоваться указанными признаками, придется постоянно вычислять пределы. Данный раздел поможет избежать сложностей во время решения примеров и задач. Для того, чтобы определить сходимость знакоположительного ряда, существует определенное условие.

Для сходимости знакоположительного ∑ k = 1 ∞ a k , a k > 0 ∀ k = 1 , 2 , 3 , . . . нужно определять ограниченную последовательность сумм.

Как сравнивать ряды

Существует несколько признаков сравнения рядов. Мы сравниваем ряд, сходимость которого предлагается определить, с тем рядом, сходимость которого известна.

Первый признак

∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k - знакоположительные ряды. Неравенство a k ≤ b k справедливо для k = 1, 2, 3, ... Из этого следует, что из ряда ∑ k = 1 ∞ b k мы можем получить ∑ k = 1 ∞ a k . Так как ∑ k = 1 ∞ a k расходится, то ряд ∑ k = 1 ∞ b k можно определить как расходящийся.

Данное правило постоянно используется для решения уравнений и является серьезным аргументом, которое поможет определить сходимость. Сложности могут состоять в том, что подобрать подходящий пример для сравнения можно найти далеко не в каждом случае. Довольно часто ряд выбирается по принципу, согласно которому показатель k -ого члена будет равняться результату вычитания показателей степеней числителя и знаменателя k -ого члена ряда. Допустим, что a k = k 2 + 3 4 k 2 + 5 , разность будет равна 2 – 3 = - 1 . В данном случае можно определить, что для сравнения необходим ряд с k -ым членом b k = k - 1 = 1 k , который является гармоническим.

Для того, чтобы закрепить полученный материал, детально рассмотрим пару типичных вариантов.

Пример 8

Определить, каким является ряд ∑ k = 1 ∞ 1 k - 1 2 .

Так как предел = 0 lim k → + ∞ 1 k - 1 2 = 0 , мы выполнили необходимое условие. Неравенство будет справедливым 1 k < 1 k - 1 2 для k , которые являются натуральными. Из предыдущих пунктов мы узнали, что гармонический ряд ∑ k = 1 ∞ 1 k – расходящийся. Согласно первому признаку, можно доказать, что исходный вариант является расходящимся.

Пример 9

Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 1 k 3 + 3 k - 1 .

В данном примере выполняется необходимое условие, так как lim k → + ∞ 1 k 3 + 3 k - 1 = 0 . Представляем в виде неравенства 1 k 3 + 3 k - 1 < 1 k 3 для любого значения k . Ряд ∑ k = 1 ∞ 1 k 3 является сходящимся, так как гармонический ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 . Согласно первому признаку, мы можем сделать вывод, что числовой ряд является сходящимся.

Пример 10

Определить, является каким является ряд ∑ k = 3 ∞ 1 k ln (ln k) . lim k → + ∞ 1 k ln (ln k) = 1 + ∞ + ∞ = 0 .

В данном варианте можно отметить выполнение нужного условия. Определим ряд для сравнения. Например, ∑ k = 1 ∞ 1 k s . Чтобы определить, чему равна степень, расммотрим последовательность { ln (ln k) } , k = 3 , 4 , 5 . . . . Члены последовательности ln (ln 3) , ln (ln 4) , ln (ln 5) , . . . увеличивается до бесконечности. Проанализировав уравнение, можно отметить, что, взяв в качестве значения N = 1619 , то члены последовательности > 2 . Для данной последовательности будет справедливо неравенство 1 k ln (ln k) < 1 k 2 . Ряд ∑ k = N ∞ 1 k 2 сходится согласно первому признаку, так как ряд ∑ k = 1 ∞ 1 k 2 тоже сходящийся. Отметим, что согласно первому признаку ряд ∑ k = N ∞ 1 k ln (ln k) сходящийся. Можно сделать вывод, что ряд ∑ k = 3 ∞ 1 k ln (ln k) также сходящийся.

Второй признак

Допустим, что ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k - знакоположительные числовые ряды.

Если lim k → + ∞ a k b k ≠ ∞ , то ряд ∑ k = 1 ∞ b k сходится, и ∑ k = 1 ∞ a k сходится также.

Если lim k → + ∞ a k b k ≠ 0 , то так как ряд ∑ k = 1 ∞ b k расходится, то ∑ k = 1 ∞ a k также расходится.

Если lim k → + ∞ a k b k ≠ ∞ и lim k → + ∞ a k b k ≠ 0 , то сходимость или расходимость ряда означает сходимость или расходимость другого.

Рассмотрим ∑ k = 1 ∞ 1 k 3 + 3 k - 1 с помощью второго признака. Для сравнения ∑ k = 1 ∞ b k возьмем сходящийся ряд ∑ k = 1 ∞ 1 k 3 . Определим предел: lim k → + ∞ a k b k = lim k → + ∞ 1 k 3 + 3 k - 1 1 k 3 = lim k → + ∞ k 3 k 3 + 3 k - 1 = 1

Согласно второму признаку можно определить, что сходящийся ряд ∑ k = 1 ∞ 1 k 3 означается, что первоначальный вариант также сходится.

Пример 11

Определить, каким является ряд ∑ n = 1 ∞ k 2 + 3 4 k 3 + 5 .

Проанализируем необходимое условие lim k → ∞ k 2 + 3 4 k 3 + 5 = 0 , которое в данном варианте выполняется. Согласно второму признаку, возьмем ряд ∑ k = 1 ∞ 1 k . Ищем предел: lim k → + ∞ k 2 + 3 4 k 3 + 5 1 k = lim k → + ∞ k 3 + 3 k 4 k 3 + 5 = 1 4

Согласно приведенным выше тезисам, расходящийся ряд влечет собой расходимость исходного ряда.

Третий признак

Рассмотрим третий признак сравнения.

Допустим, что ∑ k = 1 ∞ a k и _ ∑ k = 1 ∞ b k - знакоположительные числовые ряды. Если условие выполняется для некого номера a k + 1 a k ≤ b k + 1 b k , то сходимость данного ряда ∑ k = 1 ∞ b k означает, что ряд ∑ k = 1 ∞ a k также является сходящимся. Расходящийся ряд ∑ k = 1 ∞ a k влечет за собой расходимость ∑ k = 1 ∞ b k .

Признак Даламбера

Представим, что ∑ k = 1 ∞ a k - знакоположительный числовой ряд. Если lim k → + ∞ a k + 1 a k < 1 , то ряд является сходящимся, если lim k → + ∞ a k + 1 a k > 1 , то расходящимся.

Замечание 1

Признак Даламбера справедлив в том случае, если предел бесконечен.

Если lim k → + ∞ a k + 1 a k = - ∞ , то ряд является сходящимся, если lim k → ∞ a k + 1 a k = + ∞ , то расходящимся.

Если lim k → + ∞ a k + 1 a k = 1 , то признак Даламбера не поможет и потребуется провести еще несколько исследований.

Пример 12

Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 2 k + 1 2 k по признаку Даламбера.

Необходимо проверить, выполняется ли необходимое условие сходимости. Вычислим предел, воспользовавшись правилом Лопиталя: lim k → + ∞ 2 k + 1 2 k = ∞ ∞ = lim k → + ∞ 2 k + 1 " 2 k " = lim k → + ∞ 2 2 k · ln 2 = 2 + ∞ · ln 2 = 0

Мы можем увидеть, что условие выполняется. Воспользуемся признаком Даламбера: lim k → + ∞ = lim k → + ∞ 2 (k + 1) + 1 2 k + 1 2 k + 1 2 k = 1 2 lim k → + ∞ 2 k + 3 2 k + 1 = 1 2 < 1

Ряд является сходящимся.

Пример 13

Определить, является ряд расходящимся ∑ k = 1 ∞ k k k ! .

Воспользуемся признаком Даламбера для того, чтобы определить рассходимость ряда: lim k → + ∞ a k + 1 a k = lim k → + ∞ (k + 1) k + 1 (k + 1) ! k k k ! = lim k → + ∞ (k + 1) k + 1 · k ! k k · (k + 1) ! = lim k → + ∞ (k + 1) k + 1 k k · (k + 1) = = lim k → + ∞ (k + 1) k k k = lim k → + ∞ k + 1 k k = lim k → + ∞ 1 + 1 k k = e > 1

Следовательно, ряд является расходящимся.

Радикальный признак Коши

Допустим, что ∑ k = 1 ∞ a k - это знакоположительный ряд. Если lim k → + ∞ a k k < 1 , то ряд является сходящимся, если lim k → + ∞ a k k > 1 , то расходящимся.

Замечание 2

Если lim k → + ∞ a k k = 1 , то данный признак не дает никакой информации – требуется проведение дополнительного анализа.

Данный признак может быть использован в примерах, которые легко определить. Случай будет характерным тогда, когда член числового ряда – это показательно степенное выражение.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько характерных примеров.

Пример 14

Определить, является ли знакоположительный ряд ∑ k = 1 ∞ 1 (2 k + 1) k на сходящимся.

Нужное условие считается выполненным, так как lim k → + ∞ 1 (2 k + 1) k = 1 + ∞ + ∞ = 0 .

Согласно признаку, рассмотренному выше, получаем lim k → + ∞ a k k = lim k → + ∞ 1 (2 k + 1) k k = lim k → + ∞ 1 2 k + 1 = 0 < 1 . Данный ряд является сходимым.

Пример 15

Сходится ли числовой ряд ∑ k = 1 ∞ 1 3 k · 1 + 1 k k 2 .

Используем признак, описанный в предыдущем пункте lim k → + ∞ 1 3 k · 1 + 1 k k 2 k = 1 3 · lim k → + ∞ 1 + 1 k k = e 3 < 1 , следовательно, числовой ряд сходится.

Интегральный признак Коши

Допустим, что ∑ k = 1 ∞ a k является знакоположительным рядом. Необходимо обозначить функцию непрерывного аргумента y = f (x) , которая совпадает a n = f (n) . Если y = f (x) больше нуля, не прерывается и убывает на [ a ; + ∞) , где a ≥ 1

То в случае, если несобственный интеграл ∫ a + ∞ f (x) d x является сходящимся, то рассматриваемый ряд также сходится. Если же он расходится, то в рассматриваемом примере ряд тоже расходится.

При проверке убывания функции можно использовать материал, рассмотренный на предыдущих уроках.

Пример 16

Рассмотреть пример ∑ k = 2 ∞ 1 k · ln k на сходимость.

Условие сходимости ряда считается выполненным, так как lim k → + ∞ 1 k · ln k = 1 + ∞ = 0 . Рассмотрим y = 1 x · ln x . Она больше нуля, не прерывается и убывает на [ 2 ; + ∞) . Первые два пункта доподлинно известны, а вот на третьем следует остановиться подробнее. Находим производную: y " = 1 x · ln x " = x · ln x " x · ln x 2 = ln x + x · 1 x x · ln x 2 = - ln x + 1 x · ln x 2 . Она меньше нуля на [ 2 ; + ∞) . Это доказывает тезис о том, что функция является убывающей.

Собственно, функция y = 1 x · ln x соответствует признакам принципа, который мы рассматривали выше. Воспользуемся им: ∫ 2 + ∞ d x x · ln x = lim A → + ∞ ∫ 2 A d (ln x) ln x = lim A → + ∞ ln (ln x) 2 A = = lim A → + ∞ (ln (ln A) - ln (ln 2)) = ln (ln (+ ∞)) - ln (ln 2) = + ∞

Согласно полученным результатам, исходный пример расходится, так как несобственный интеграл является расходящимся.

Пример 17

Докажите сходимость ряда ∑ k = 1 ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 .

Так как lim k → + ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 = 1 + ∞ = 0 , то условие считается выполненным.

Начиная с k = 4 , верное выражение 1 (10 k - 9) (ln (5 k + 8)) 3 < 1 (5 k + 8) (ln (5 k + 8)) 3 .

Если ряд ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 будет считаться сходящимся, то, согласно одному из принципов сравнения, ряд ∑ k = 4 ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 также будет считаться сходящимся. Таким образом, мы сможет определить, что исходное выражение также является сходящимся.

Перейдем к доказательству ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 .

Так как функция y = 1 5 x + 8 (ln (5 x + 8)) 3 больше нуля, не прерывается и убывает на [ 4 ; + ∞) . Используем признак, описанный в предыдущем пункте:

∫ 4 + ∞ d x (5 x + 8) (l n (5 x + 8)) 3 = lim A → + ∞ ∫ 4 A d x (5 x + 8) (ln (5 x + 8)) 3 = = 1 5 · lim A → + ∞ ∫ 4 A d (ln (5 x + 8) (ln (5 x + 8)) 3 = - 1 10 · lim A → + ∞ 1 (ln (5 x + 8)) 2 | 4 A = = - 1 10 · lim A → + ∞ 1 (ln (5 · A + 8)) 2 - 1 (ln (5 · 4 + 8)) 2 = = - 1 10 · 1 + ∞ - 1 (ln 28) 2 = 1 10 · ln 28 2

В полученном сходящемся ряде, ∫ 4 + ∞ d x (5 x + 8) (ln (5 x + 8)) 3 , можно определить, что ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 также сходится.

Признак Раабе

Допустим, что ∑ k = 1 ∞ a k - знакоположительный числовой ряд.

Если lim k → + ∞ k · a k a k + 1 < 1 , то ряд расходится, если lim k → + ∞ k · a k a k + 1 - 1 > 1 , то сходится.

Данный способ определения можно использовать в том случае, если описанные выше техники не дают видимых результатов.

Исследование на абсолютную сходимость

Для исследования берем ∑ k = 1 ∞ b k . Используем знакоположительный ∑ k = 1 ∞ b k . Мы можем использовать любой из подходящих признаков, которые мы описывали выше. Если ряд ∑ k = 1 ∞ b k сходится, то исходный ряд является абсолютно сходящимся.

Пример 18

Исследовать ряд ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 на сходимость ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 = ∑ k = 1 ∞ 1 3 k 3 + 2 k - 1 .

Условие выполняется lim k → + ∞ 1 3 k 3 + 2 k - 1 = 1 + ∞ = 0 . Используем ∑ k = 1 ∞ 1 k 3 2 и воспользуемся вторым признаком: lim k → + ∞ 1 3 k 3 + 2 k - 1 1 k 3 2 = 1 3 .

Ряд ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 сходится. Исходный ряд также абсолютно сходящийся.

Расходимость знакопеременных рядов

Если ряд ∑ k = 1 ∞ b k – расходящийся, то соответствующий знакопеременный ряд ∑ k = 1 ∞ b k либо расходящийся, либо условно сходящийся.

Лишь признак Даламбера и радикальный признак Коши помогут сделать выводы о ∑ k = 1 ∞ b k по расходимости из модулей ∑ k = 1 ∞ b k . Ряд ∑ k = 1 ∞ b k также расходится, если не выполняется необходимое условие сходимости, то есть, если lim k → ∞ + b k ≠ 0 .

Пример 19

Проверить расходимость 1 7 , 2 7 2 , - 6 7 3 , 24 7 4 , 120 7 5 - 720 7 6 , . . . .

Модуль k -ого члена представлен как b k = k ! 7 k .

Исследуем ряд ∑ k = 1 ∞ b k = ∑ k = 1 ∞ k ! 7 k на сходимость по признаку Даламбера: lim k → + ∞ b k + 1 b k = lim k → + ∞ (k + 1) ! 7 k + 1 k ! 7 k = 1 7 · lim k → + ∞ (k + 1) = + ∞ .

∑ k = 1 ∞ b k = ∑ k = 1 ∞ k ! 7 k расходится так же, как и исходный вариант.

Пример 20

Является ли ∑ k = 1 ∞ (- 1) k · k 2 + 1 ln (k + 1) сходящимся.

Рассмотрим на необходимое условие lim k → + ∞ b k = lim k → + ∞ k 2 + 1 ln (k + 1) = ∞ ∞ = lim k → + ∞ = k 2 + 1 " (ln (k + 1)) " = = lim k → + ∞ 2 k 1 k + 1 = lim k → + ∞ 2 k (k + 1) = + ∞ . Условие не выполнено, поэтому ∑ k = 1 ∞ (- 1) k · k 2 + 1 ln (k + 1) ряд расходящийся. Предел был вычислен по правилу Лопиталя.

Признаки для условной сходимости

Признак Лейбница

Определение 12

Если величины членов знакочередующегося ряда убывают b 1 > b 2 > b 3 > . . . > . . . и предел модуля = 0 при k → + ∞ , то ряд ∑ k = 1 ∞ b k сходится.

Пример 17

Рассмотреть ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) на сходимость.

Ряд представлен как ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) = ∑ k = 1 ∞ 2 k + 1 5 k (k + 1) . Нужное условие выполняется lim k → + ∞ = 2 k + 1 5 k (k + 1) = 0 . Рассмотрим ∑ k = 1 ∞ 1 k по второму признаку сравнения lim k → + ∞ 2 k + 1 5 k (k + 1) 1 k = lim k → + ∞ 2 k + 1 5 (k + 1) = 2 5

Получаем, что ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) = ∑ k = 1 ∞ 2 k + 1 5 k (k + 1) расходится. Ряд ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) сходится по признаку Лейбница: последовательность 2 · 1 + 1 5 · 1 · 1 1 + 1 = 3 10 , 2 · 2 + 1 5 · 2 · (2 + 1) = 5 30 , 2 · 3 + 1 5 · 3 · 3 + 1 , . . . убывает и lim k → + ∞ = 2 k + 1 5 k (k + 1) = 0 .

Ряд условно сходится.

Признак Абеля-Дирихле

Определение 13

∑ k = 1 + ∞ u k · v k сходится в том случае, если { u k } не возрастает, а последовательность ∑ k = 1 + ∞ v k ограничена.

Пример 17

Исследуйте 1 - 3 2 + 2 3 + 1 4 - 3 5 + 1 3 + 1 7 - 3 8 + 2 9 + . . . на сходимость.

Представим

1 - 3 2 + 2 3 + 1 4 - 3 5 + 1 3 + 1 7 - 3 8 + 2 9 + . . . = 1 · 1 + 1 2 · (- 3) + 1 3 · 2 + 1 4 · 1 + 1 5 · (- 3) + 1 6 · = ∑ k = 1 ∞ u k · v k

где { u k } = 1 , 1 2 , 1 3 , . . . - невозрастающая, а последовательность { v k } = 1 , - 3 , 2 , 1 , - 3 , 2 , . . . ограничена { S k } = 1 , - 2 , 0 , 1 , - 2 , 0 , . . . . Ряд сходится.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пусть задана бесконечная числовая последовательность

Определение 1.1 . Числовым рядом или просто рядом называется выражение (сумма) вида

Числа называются членами ряда , - общим или n-м членом ряда.

Чтобы задать ряд (1.1) достаточно задать функцию натурального аргумента вычисления -го члена ряда по его номеру

Из членов ряда (1.1) образуем числовую последовательность частичных сумм где - сумма первых членов ряда, которая называется n -й частичной суммой , т.е.

…………………………….

…………………………….

Числовая последовательность при неограниченном возрастании номера может:

1) иметь конечный предел;

2) не иметь конечного предела (предел не существует или равен бесконечности).

Определение 1.2 . Ряд (1.1) называется сходящимся, если последовательность его частичных сумм (1.5) имеет конечный предел, т.е.

В этом случае число называется суммой ряда (1.1) и обозначается

Определение 1.3. Ряд (1.1) называется расходящимся, если последовательность его частичных сумм не имеет конечного предела.

Расходящемуся ряду не приписывают никакой суммы.

Таким образом, задача нахождения суммы сходящегося ряда (1.1) равносильна вычислению предела последовательности его частичных сумм.

Основные свойства числовых рядов

Свойства суммы конечного числа слагаемых отличаются от свойств ряда, т.е. суммы бесконечного числа слагаемых. Так, в случае конечного числа слагаемых их можно группировать в каком угодно порядке, от этого сумма не изменится. Существуют сходящиеся ряды (условно сходящиеся), для которых, как показал Риман Георг Фридрих Бернхард, меняя надлежащим образом порядок следования их членов, можно сделать сумму ряда равной какому угодно числу, и даже расходящийся ряд.

Пример 2.1. Рассмотрим расходящийся ряд вида

Сгруппировав его члены попарно, получим сходящийся числовой ряд с суммой, равной нулю:

С другой стороны, сгруппировав его члены попарно, начиная со второго члена, получим также сходящийся ряд, но уже с суммой, равной единице:

Сходящиеся ряды обладают некоторыми свойствами, которые позволяют действовать с ними, как с конечными суммами. Так их можно умножать на числа, почленно складывать и вычитать. У них можно объединять в группы любые рядом стоящие слагаемые.

Теорема 2.1. (Необходимый признак сходимости ряда).

Если ряд (1.1) сходится, то его общий член стремится к нулю при неограниченном возрастании n, т.е.

Доказательство теоремы следует из того, что, и если

S - сумма ряда (1.1), то

Условие (2.1) является необходимым, но недостаточным условием для сходимости ряда. Т. е., если общий член ряда стремится к нулю при, то это не значит, что ряд сходится. Например, для гармонического ряда (1.2) однако он расходится.

Следствие (Достаточный признак расходимости ряда).

Если общий член ряда не стремится к нулю при, то этот ряд расходится.

Свойство 2.1. Сходимость или расходимость ряда не изменится, если произвольным образом удалить из него, добавить к нему, переставить в нем конечное число членов (при этом для сходящегося ряда его сумма может измениться).

Доказательство свойства следует из того, что ряд (1.1) и любой его остаток сходятся или расходятся одновременно.

Свойство 2.2. Сходящийся ряд можно умножать на число, т.е., если ряд (1.1) сходится, имеет сумму S и c - некоторое число, тогда

Доказательство следует из того, что для конечных сумм справедливы равенства

Свойство 2.3. Сходящиеся ряды можно почленно складывать и вычитать, т.е. если ряды,

сходятся,

сходится и его сумма равна т.е.

Доказательство следует из свойств предела конечных сумм, т.е.

Признак сравнения

Пусть даны два положительных ряда

и выполняются условия для всех n=1,2,…

Тогда: 1) из сходимости ряда (3.2) следует сходимость ряда (3.1);

2) из расходимости ряда (3.1) следует расходимость ряда (3.2).

Доказательство . 1. Пусть ряд (3.2) сходится и его сумма равна В. Последовательность частичных сумм ряда (3.1) является неубывающей ограниченной сверху числом В, т.е.

Тогда в силу свойств таких последовательностей следует, что она имеет конечный предел, т.е. ряд (3.1) сходится.

2. Пусть ряд (3.1) расходится. Тогда, если ряд (3.2) сходится, то в силу доказанного выше пункта 1 сходился бы и исходный ряд, что противоречит нашему условию. Следовательно ряд (3.2) также расходится.

Этот признак удобно применять к определению сходимости рядов, сравнивая их с рядами, сходимость которых уже известна.

Признак Даламбера

Тогда: 1) при q < 1 ряд (1.1) сходится;

2) при q > 1 ряд (1.1) расходится;

Замечание: Ряд (1.1) будет расходиться и в том случае, когда

Признак Коши

Пусть члены положительного ряда (1.1) таковы, что существует предел

Тогда: 1) при q < 1 ряд (1.1) сходится;

2) при q > 1 ряд (1.1) расходится;

3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.

Интегральный признак Коши - Маклорена

Пусть функция f(x) непрерывная неотрицательная невозрастающая функция на промежутке

Тогда ряд и несобственный интеграл сходятся или расходятся одновременно.

1 свойство .

Отбрасывание конечного числа членов не влияет на сходимость ч.р.

РассмотримиПусть

Если существует конечный предел справа в (29.1), то существует и предел слева, и рядсходится

2 свойство .

Если рядсходится и имеет сумму S, то ряд

с = const, сходится и имеет сумму cS.

Пустьтогда

3 свойство .

Если рядысходятся и имеют суммысоответственно, то рядсходится и имеет сумму

  1. Ряды с положительными членами. Признаки сравнения сходимости положительных рядов. Положительные ряды

Если a n ≥ 0 (n = 1, 2, 3, ...), то рядa 1 +a 2 +a 3 + ... называетсяположительным . В том случае, когда при всехn оказываетсяa n > 0, будем называть рядстрого положительным .

Положительные ряды обладают многими свойствами, сближающими их с обычными суммами конечного числа слагаемых.

Легко видеть, что частичная сумма S n =a 1 +a 2 + ... +a n положительного рядавозрастает (может быть, не строго) с увеличениемn . Так как всякая возрастающая числовая последовательность имеет конечный или бесконечный предел (причем члены последовательности не превосходят этого предела), то для любого положительного ряда существует предел

Этот предел будет конечным или бесконечным, смотря по тому, ограничено сверху или нет множество частичных сумм {S n }. Таким образом, имеет место

Теорема 1 . Положительный ряд сходится тогда и только тогда, когда множество его частичных сумм ограничено сверху.

Разумеется, у ряда не положительного ограниченность множества частичных сумм не обеспечивает сходимости, как это видно из примера ряда 1 + (-1) + 1 + (-1) + ...

Отметим еще, что частичные суммы сходящегося положительного ряда не превосходят его суммы.

Доказанная теорема сводит вопрос о сходимости положительного ряда к более простому вопросу об ограниченности множества его частичных сумм.

Рассмотрим, например, ряд (24)

в котором α > 1. Суммуэтого ряда можно записать так:

Так как сумма содержит 2 k слагаемых, а самое большое из них есть первое, то эта сумма не превосходит числа

Поэтому

Стоящая здесь справа сумма есть частичная сумма геометрической прогрессии

Как было доказано ранее эта прогрессия сходится (т. к. α > 1), и сумма ее равна

Так как прогрессия (25) также является рядом положительным, то ее частичные суммы не превосходят ее суммы (26). Тем более

Это неравенство установлено для любого m . Но для всякогоn можно найти такоеm , что 2 m - 1 >n .

Поэтому при всяком n оказываетсяи ряд (24) сходится.

Следует, однако, заметить, что непосредственное применение теоремы 1 встречается сравнительно редко.

Обычно применяют основанные на ней, но более удобные признаки сходимости рядов. Простейший из них - это так называемый признак сравнения рядов

Если каждый член положительного ряда не больше, чем имеющий тот же номер член другого ряда, то второй ряд называется мажорантным по отношению к первому.

Иначе говоря, ряд b 1 +b 2 +b 3 + ... является мажорантным по отношению к рядуa 1 +a 2 +a 3 + ..., если при всехn будетa n b n .

Легко понять, что частичная сумма данного ряда не больше, чем (имеющая тот же номер) частичная сумма ряда мажорантного. Значит, если ограничены сверху частичные суммы мажорантного ряда, то это и подавно так для исходного ряда. Отсюда вытекает

Теорема 2. Если для положительного ряда существует сходящийся мажорантный ряд, то и сам этот ряд сходится. Если же данный ряд расходится, то расходится и всякий мажорантный для него ряд.

Рассмотрим, например, ряд (27)

предполагая α < 1. Ясно, что этот ряд - мажорантный по отношению к гармоническому ряду, и потому ряд (27) расходится.

Первый признак сравнения рядов. Пустьи- два знакоположительных числовых ряда и выполняется неравенстводля всехk = 1, 2, 3, ... Тогда из сходимости рядаследует сходимость, а из расходимости рядаследует расходимость. Первый признак сравнения используется очень часто и представляет собой очень мощный инструмент исследования числовых рядов на сходимость. Основную проблему представляет подбор подходящего ряда для сравнения. Ряд для сравнения обычно (но не всегда) выбирается так, что показатель степени егоk-ого члена равен разности показателей степени числителя и знаменателяk-ого члена исследуемого числового ряда. К примеру, пусть, разность показателей степени числителя и знаменателя равна2 – 3 = -1 , поэтому, для сравнения выбираем ряд сk-ым членом, то есть, гармонический ряд. Рассмотрим несколько примеров.Пример. Установить сходимость или расходимость ряда.Решение. Так как предел общего члена ряда равен нулю, то необходимое условие сходимости ряда выполнено. Несложно заметить, что справедливо неравенстводля всех натуральныхk . Мы знаем, что гармонический рядрасходится, следовательно, по первому признаку сравнения исходный ряд также является расходящимся.Пример. Исследуйте числовой рядна сходимость.Решение. Необходимое условие сходимости числового ряда выполняется, так как. Очевидно выполнение неравенствадля любого натурального значенияk . Рядсходится, так как обобщенно гармонический рядявляется сходящимся дляs > 1 . Таким образом, первый признак сравнения рядов позволяет констатировать сходимость исходного числового ряда.Пример. Определите сходимость или расходимость числового ряда.Решение. , следовательно, необходимое условие сходимости числового ряда выполнено. Какой ряд выбрать для сравнения? Напрашивается числовой ряд, а чтобы определиться сs , внимательно исследуем числовую последовательность. Члены числовой последовательностивозрастают к бесконечности. Таким образом, начиная с некоторого номераN (а именно, сN = 1619 ), члены этой последовательности будут больше2 . Начиная с этого номераN , справедливо неравенство. Числовой рядсходится в силу первого свойства сходящихся рядов, так как получается из сходящегося рядаотбрасыванием первыхN – 1 члена. Таким образом, по первому признаку сравнения сходящимся является ряд, а в силу первого свойства сходящихся числовых рядов сходится будет и ряд.Второй признак сравнения. Пустьи- знакоположительные числовые ряды. Если, то из сходимости рядаследует сходимость. Если, то из расходимости числового рядаследует расходимость.Следствие. Еслии, то из сходимости одного ряда следует сходимость другого, а из расходимости следует расходимость. Исследуем рядна сходимость с помощью второго признака сравнения. В качестве рядавозьмем сходящийся ряд. Найдем предел отношенияk-ых членов числовых рядов:Таким образом, по второму признаку сравнения из сходимости числового рядаследует сходимость исходного ряда.

Пример. Исследовать на сходимость числовой ряд.Решение. Проверим необходимое условие сходимости ряда. Условие выполнено. Для применения второго признака сравнения возьмем гармонический ряд. Найдем предел отношенияk-ых членов:Следовательно, из расходимости гармонического ряда следует расходимость исходного ряда по второму признаку сравнения. Для информации приведем третий признак сравнения рядов.Третий признак сравнения. Пустьи- знакоположительные числовые ряды. Если с некоторого номераN выполняется условие, то из сходимости рядаследует сходимость, а из расходимости рядаследует расходимость.