Равновесие нэша. Равновесие по нэшу

И Оскар Моргенштерн стали основателями нового интересного направления математики, которое получило название "теория игр". В 1950-е годы этим направлением заинтересовался молодой математик Джон Нэш. Теория равновесия стала темой его диссертации, которую он написал, будучи в возрасте 21 год. Так родилась новая стратегия игр под названием «Равновесие по Нэшу», заслужившая Нобелевскую премию спустя много лет - в 1994 году.

Долгий разрыв между написанием диссертации и всеобщим признанием стал испытанием для математика. Гениальность без признания вылилась в серьезные ментальные нарушения, но и эту задачу Джон Нэш смог решить благодаря прекрасному логическуму разуму. Его теория "равновесие по Нэшу" удостоилась премии Нобеля, а его жизнь экранизации в фильме «Beautiful mind» («Игры разума»).

Кратко о теории игр

Поскольку теория равновесия Нэша объясняет поведение людей в условиях взаимодействия, поэтому стоит рассмотреть основные понятия теории игр.

Теория игр изучает поведение участников (агентов) в условиях взаимодействия друг с другом по типу игры, когда исход зависит от решения и поведения нескольких людей. Участник принимает решения, руководствуясь своими прогнозами относительно поведения остальных, что и называется игровой стратегией.

Существует также доминирующая стратегия, при которой участник получает оптимальный результат при любом поведении других участников. Это наилучшая безпроигрышная стратегия игрока.

Дилемма заключенного и научный прорыв

Дилемма заключенного - это случай с игрой, когда участники вынуждены принимать рациональные решения, достигая общей цели в условии конфликта альтернатив. Вопрос заключается в том, какой из этих вариантов он выберет, осознавая личный и общий интерес, а также невозможность получить и то, и другое. Игроки словно заключены в жесткие игровые условия, что порой заставляет их мыслить очень продуктивно.

Эту дилемму исследовал американский математик Равновесие, которое он вывел, стало революционным в своем роде. Особенно ярко эта новая мысль повлияла на мнение экономистов о том, как делают выбор игроки рынка, учитывая интересы других, при плотном взаимодействии и пересечении интересов.

Лучше всего изучать теорию игр на конкретных примерах, поскольку сама эта математическая дисциплина не является сухо-теоретической.

Пример дилеммы заключенного

Пример, два человека совершили грабеж, попали в руки полиции и проходят допрос в отдельных камерах. При этом служители полиции предлагают каждому участнику выгодные условия, при которых он выйдет на свободу в случае дачи показаний против своего напарника. У каждого из преступников существует следующий набор стратегий, которые он будет рассматривать:

  1. Оба одновременно дают показания и получают по 2,5 года в тюрьме.
  2. Оба одновременно молчат и получают по 1 году, поскольку в таком случае доказательная база их вины будет мала.
  3. Один дает показания и получает свободу, а другой молчит и получает 5 лет тюрьмы.

Очевидно, что исход дела зависит от решения обоих участников, но сговориться они не могут, поскольку сидят в разных камерах. Также ярко виден конфликт их личных интересов в борьбе за общий интерес. У каждого из заключенных есть два варианта действий и 4 варианта исходов.

Цепь логических умозаключений

Итак, преступник А рассматривает следующие варианты:

  1. Я молчу и молчит мой напарник — мы оба получим по 1 году тюрьмы.
  2. Я сдаю напарника и он сдает меня — мы оба получим по 2,5 года тюрьмы.
  3. Я молчу, а напарник меня сдает — я получу 5 лет тюрьмы, а он свободу.
  4. Я сдаю напарника, а он молчит - я получаю свободу, а он 5 лет тюрьмы.

Приведем матрицу возможных решений и исходов для наглядности.

Таблица вероятных исходов дилеммы заключенного.

Вопрос состоит в том, что выберет каждый участник?

«Молчать, нельзя говорить» или «молчать нельзя, говорить»

Чтобы понять выбор участника, нужно пройти по цепочке его размышлений. Следуя рассуждениям преступника А: если я промолчу и промолчит мой напарник, мы получим минимум срока (1 год), но я не могу узнать, как он себя поведет. Если он даст показания против меня, то мне также лучше дать показания, иначе я могу сесть на 5 лет. Лучше мне сесть на 2,5 года, чем на 5 лет. Если он промолчит, то мне тем более нужно дать показания, поскольку так я получу свободу. Точно так же рассуждает и участник B.

Нетрудно понять, что доминирующая стратегия для каждого из преступников - это дача показаний. Оптимальная точка этой игры наступает тогда, когда оба преступника дают показания и получают свой «приз» — 2,5 года тюрьмы. Теория игр Нэша называет это равновесием.

Неоптимальное оптимальное решение по Нэшу

Революционность нэшевского взгляда в том, не является оптимальным, если рассмотреть отдельного участника и его личный интерес. Ведь наилучший вариант - это промолчать и выйти на свободу.

Равновесие по Нэшу - это точка соприкосновения интересов, где каждый участник выбирает такой вариант, который для него оптимальный только при условии, что другие участники выбирают определенную стратегию.

Рассматривая вариант, когда оба преступника молчат и получают всего по 1 году, можно назвать него Парето-оптимальным вариантом. Однако он возможен, только если преступники смогли бы сговориться заранее. Но даже это не гарантировало бы этого исхода, поскольку соблазн отступить от уговора и избежать наказания велик. Отсутствие полного доверия друг к другу и опасность получить 5 лет вынуждает выбрать вариант с признанием. Размышлять о том, что участники будут придерживаться варианта с молчанием, действуя согласованно, просто нерационально. Такой вывод можно сделать, если изучать равновесие Нэша. Примеры только доказывают правоту.

Эгоистично или рационально

Теория равновесия Нэша дала потрясающие выводы, опровергнувшие существующие до этого принципы. Например, Адам Смит рассматривал поведение каждого из участников как абсолютно эгоистичное, что и приводило систему в равновесие. Эта теория носила название «невидимая рука рынка».

Джон Нэш увидел, что если все участники будут действовать, преследуя только свои интересы, то это никогда не приведет к оптимальному групповому результату. Учитывая, что рациональное мышление присуще каждому участнику, более вероятен выбор, который предлагает стратегия равновесия Нэша.

Чисто мужской эксперимент

Ярким примером может служить игра «парадокс блондинки», которая хотя и кажется неуместной, но является яркой иллюстрацией, показывающей, как работает теория игр Нэша.

В этой игре нужно представить, что компания свободных парней пришла в бар. Рядом оказывается компания девушек, одна из которых предпочтительнее других, скажем блондинка. Как парням повести себя, чтобы получить наилучшую подругу для себя?

Итак, рассуждения парней: если все начнут знакомиться с блондинкой, то, скорее всего, она никому не достанется, тогда и ее подруги не захотят знакомства. Никто не хочет быть вторым запасным вариантом. Но если парни выберут избегать блондинку, то вероятность каждому из парней найти среди девушек хорошую подругу высока.

Ситуация равновесия по Нэшу неоптимальна для парней, поскольку, преследуя лишь свои эгоистические интересы, каждый выбрал бы именно блондинку. Видно, что преследование только эгоистичных интересов будет равнозначно краху групповых интересов. Равновесие по Нэшу будет значить то, что каждый парень действует в своих личных интересах, которые соприкасаются с интересами всей группы. Это неоптимальный вариант для каждого лично, но оптимальный для каждого, исходя из общей стратегии успеха.

Вся наша жизнь игра

Принятие решений в реальных условиях очень напоминает игру, когда вы ожидаете определенного рационального поведения и от других участников. В бизнесе, в работе, в коллективе, в компании и даже в отношениях с противоположным полом. От больших сделок и до обычных жизненных ситуаций все подчиняется тому или иному закону.

Конечно, рассмотренные игровые ситуации с преступниками и баром - это всего лишь отличные иллюстрации, демонстрирующие равновесие Нэша. Примеры таких дилемм очень часто возникают на реальном рынке, а особенно это работает в случаях с двумя монополистами, контролирующими рынок.

Смешанные стратегии

Часто мы вовлекаемы не в одну, а сразу в несколько игр. Выбирая один из вариантов одной игре, руководствуясь рациональной стратегией, но попадаете в другую игру. После нескольких рациональных решений вы можете обнаружить, что ваш результат вас не устраивает. Что же предпринимать?

Рассмотрим два вида стратегии:

  • Чистая стратегия - это поведение участника, которое исходит из размышления над возможным поведением других участников.
  • Смешанная стратегия или случайная стратегия - это чередование чистых стратегий случайным образом или выбор чистой стратегии с определенной вероятностью. Такую стратегию еще называют рэндомизированной.

Рассматривая такое поведение, мы получаем новый взгляд на равновесие по Нешу. Если ранее говорилось о том, что игрок выбирает стратегию один раз, то можно представить и другое поведение. Можно допустить тот вариант, что игроки выбирают стратегию случайно с определенной вероятностью. Игры, в которых нельзя найти равновесия Нэша в чистых стратегиях, всегда имеют их в смешанных.

Равновесие Нэша в смешанных стратегиях называется смешанным равновесием. Это такое равновесие, где каждый участник выбирает оптимальную частоту выбора своих стратегий при условии, что другие участники выбирают свои стратегии с заданной частотой.

Пенальти и смешанная стратегия

Пример смешанной стратегии можно привести в игре в футбол. Лучшая иллюстрация смешанной стратегии - это, пожалуй, серия пенальти. Так, у нас есть вратарь, который может прыгнуть только в один угол, и игрок, который будет бить пенальти.

Итак, если в первый раз игрок выберет стратегию сделать удар в левый угол, а вратарь также упадет в этот угол и словит мяч, то как могут развиваться события во второй раз? Если игрок будет бить в противоположный угол, это, скорее всего, слишком очевидно, но и удар в тот же угол не менее очевиден. Поэтому и вратарю, и бьющему ничего не остается, как положиться на случайный выбор.

Так, чередуя случайный выбор с определенной чистой стратегией, игрок и вратарь пытаються получить максимальный результат.

Что же делать участвующим в игре агентам? Как им определить, какая стратегия лучше других?

Давайте для начала поставим перед собой более скромную цель: определить, какие стратегии точно не подойдут.

Определение 1.2 . Стратегия агента называется доминируемой, если существует такая стратегия , что

В таком случае говорят, что доминирует над .

Иначе говоря, стратегия доминируема, если существует другая стратегия, которая не хуже в каждой точке, при любых возможных комбинациях стратегий других агентов. Значит, нет вообще никакой причины предпочитать , и ее можно просто отбросить при анализе.

Пример 1.4 . Вспомним пример 1.2, в котором полковник Блотто собирался расставить войска на поле . Если проанализировать матрицу из примера 1.2, станет очевидным, что стратегии , и доминируются другими: например, стратегия окажется лучше любой из них. Разумеется, то же самое верно и для противника Блотто. Таким образом, матрица существенно сократится.


Конец примера 1.4 .

Пример 1.5 . В примере 1.3, в котором мы обсуждали конкуренцию по Курно, было очень много доминируемых стратегий. Таковыми были все стратегии : они гарантированно приносили неположительную прибыль , в то время как нулевая стратегия (, ничего не производить) гарантирует нулевую прибыль . Поэтому сразу можно было ограничиться анализом квадрата в качестве множества стратегий.

Конец примера 1.5 .

Правда, стоит заметить, что легко построить пример, в котором любая стратегия доминируема. Это будет значить, что некоторые стратегии эквивалентны, то есть доминируют друг над другом. В таких случаях хотя бы одну из них стоит оставить, а то совсем не из чего будет выбирать.

Продолжаем разговор. После доминируемых стратегий логично будет ввести доминантные стратегии .

Определение 1.3 . Стратегия агента называется доминантной , если всякая другая стратегия ею доминируется, то есть

Доминантная стратегия для агента - настоящее счастье. Ему вообще думать не надо: достаточно выбрать доминантную стратегию, все равно никакая другая ни при каком исходе ничего лучшего не даст.

Более того, если у всех агентов есть доминантные стратегии , то анализ такой игры закончится, не успев начаться. Можно с уверенностью сказать, что все агенты выберут свои доминантные стратегии .

Определение 1.4 . Равновесие в доминантных стратегиях для стратегической игры - это такой профиль стратегий , что для всякого агента стратегия является доминантной.

Такое равновесие является самым устойчивым из всех. В следующей лекции мы приведем пример из теории экономических механизмов, в котором возникает такое равновесие - так называемый аукцион Викри (см. теорему 2.1.

Но, к сожалению, счастье достижимо далеко не всегда. Ни в примере 1.1, ни в примере 1.2, ни в примере 1.3 никакого равновесия в доминантных стратегиях не получалось. Для каждой стратегии игрока там существовал профиль стратегий других игроков , в котором игроку было бы выгодно сменить на ту или иную .

Равновесие Нэша

В предыдущем параграфе мы обсудили, что если у агента есть доминантная стратегия , то ему вообще размышлять и беспокоиться не о чем: он может просто выбирать эту стратегию. Но что же делать участвующим в игре агентам, когда таких стратегий нет и не предвидится?

Тогда приходится учитывать не только свои собственные стратегии, но и стратегии других агентов. Учет этот приведет к понятию равновесия, сформулированному в 1950 году Джоном Нэшем .

Определение 1.5 . Равновесие Нэша в чистых стратегиях для стратегической игры - это такой профиль стратегий , что для всякого агента выполняется следующее условие:

Иначе говоря, как и прежде, агенту невыгодно отклоняться от избранной стратегии . Но теперь ему это невыгодно делать не абстрактно, при любом выборе стратегий у других агентов, а только в конкретном профиле стратегий .

Пример 1.6 . Продолжаем рассматривать беднягу Блотто. Матрица игры полковника без доминируемых стратегий была приведена в примере 1.4. Из матрицы легко видеть, что если один игрок выбирает стратегию , то от выбора другого уже ничего не зависит, то есть можно сказать, что другому тоже нет резона отклоняться от стратегии . Все это значит, что для данной игры профиль стратегий находится в равновесии Нэша.

Конец примера 1.6 .

Приведем и непрерывный пример - поверьте, нас еще ждут подобные рассуждения, и пора привыкать к чуть более серьезному анализу.

Пример 1.7 . Вернемся к анализу конкуренции по Курно из примера 1.3. На этот раз мы не будем ничего упрощать: пусть цена задается неизвестной функцией , а себестоимость производства для каждой фирмы - неизвестной функцией . Чтобы найти равновесие Нэша, найдем функцию лучшего ответа. Прибыль компании определяется как

Чтобы определить максимум функции для фиксированного , нужно просто найти производную

и приравнять ее к нулю. Соответственно, равновесие Нэша достигается там, где обе фирмы выдают оптимальный ответ на стратегию противника, то есть на решениях следующей системы дифференциальных уравнений :


Оставим читателю удовольствие проверить, что в рассмотренном в примере 1.3 частном случае равновесием Нэша действительно будет точка пересечения прямых на рис. 1.1 .

Конец примера 1.7 .

В определении 1.5 упоминался странный термин " чистые стратегии ": а какими еще они бывают? Оказывается, что стратегии бывают не только чистыми, но и смешанными. Смешанные стратегии - логичное расширение понятия стратегии: давайте разрешим игроку не только выбирать одну из , но и делать из них более или менее случайный выбор.

Определение 1.6 . Смешанная стратегия для игрока в стратегической игре - это распределение вероятностей , где - множество всех распределений вероятностей над .

Смешанную стратегию также можно рассматривать как задание весов для каждой стратегии так, чтобы сумма (в непрерывном случае - интеграл ) всех весов была равна 1.

Бывают игры, где нет равновесий Нэша для чистых стратегий . Но оно всегда (в конечном случае) есть в смешанных стратегиях .

Пример 1.8 . Вспомним игру "камень-ножницы-бумага", матрицу которой мы уже выписывали в примере 1.1.

Очевидно, что никакого равновесия Нэша в чистых стратегиях здесь нет: для любой стратегии найдется кому ее опровергнуть. Но равновесие Нэша в смешанных стратегиях здесь имеется. Предположим, что второй игрок выбирает камень, ножницы или бумагу с вероятностью , а первый выбирает их с вероятностями , и . Тогда первый игрок выигрывает с вероятностью

а также проигрывает и делает ничью с той же вероятностью. Иначе говоря, если противник выбирает стратегию равновероятно, для игрока все стратегии эквивалентны. Поскольку игра симметрична, получается, что профиль смешанных стратегий

находится в равновесии.

Конец примера 1.8 .

Доказательство того, что равновесие в смешанных стратегиях всегда существует, следует из теоремы Какутани о неподвижной точке [ , ].

Теорема 1.1 (Какутани) Пусть - непустое выпуклое компактное подмножество евклидова пространства , а - многозначная функция на с замкнутым графиком, такая, что множество непусто, замкнуто и выпукло для всех . Тогда у есть

Равновесие Нэша (Nash equilibrium ) - это такая ситуация, при которой ни один из игроков не может увеличить свой выигрыш, в одностороннем порядке меняя свое решение. Другими словами, равновесие Нэша - это положение, при котром стратегия обеих игроков является наилучшей реакцией на действия своего оппонента

Равновесие Нэша в чистых стратегиях для стратегической игры - это такой профиль стратегий, что для всякого агента выполняется следующее условие:

Если в игре каждый из противников применяет только одну и ту же стратегию, то про саму игру в этом случае говорят, что она происходит в чистых стратегиях , а используемые игроком А и игроком В пара стратегий называются чистыми стратегиями .

Определение. В антогонистической игре пара стратегий (А i , В j) называется равновесной или устойчивой, если ни одному из игроков не выгодно отходить от своей стратегии.

Применять чистые стратегии имеет смысл тогда, когда игроки А и В располагают сведениями о действиях друг друга и достигнутых результатах. Если допустим, что хотя бы одна из сторон не знает о поведении противника, то идея равновесия нарушается, и игра ведется бессистемно.

33. Функция Неймана- Моргенштерна в теории игр. Равновесие Байеса-Нэша

Систематическая же математическая теория игр была детально разработана американскими учёными Дж. Нейманом и О. Моргенштерном (1944) как средство математического подхода к явлениям конкурентной экономики. В ходе своего развития И. т. переросла эти рамки и превратилась в общую математическую теорию конфликтов.

Основным в И. т. является понятие игры, являющееся формализованным представлением о конфликте. Точное описание конфликта в виде игры состоит поэтому в указании того, кто и как участвует в конфликте, каковы возможные исходы конфликта, а также кто и в какой форме заинтересован в этих исходах. Участвующие в конфликте стороны называются коалициями действия; доступные для них действия - их стратегиями; возможные исходы конфликта - ситуациями (обычно каждая ситуация понимается как результат выбора каждой из коалиций действия некоторой своей стратегии); стороны, заинтересованные в исходах конфликта, - коалициями интересов; их интересы описываются предпочтениями тех или иных ситуаций (эти предпочтения часто выражаются численными выигрышами). Конкретизация перечисленных объектов и связей между ними порождает разнообразные частные классы игр.

Определить оптимальную стратегию можно:

  • Равновесие Байеса-Нэша: если определено статистическое распределение встречаемого поведения (например, 33 % «око за око», 33 % всегда обманывают и 33 % всегда сотрудничают), то стратегию можно вычислить математически . Этим детально занимается теория эволюционной динамики.