Развитие отечественной космонавтики 20 веке. История освоения космоса

История развития отечественной космонавтики

Космонавтика стала делом жизни нескольких поколений наших соотечественников. Российские исследователи были первооткрывателями в этой сфере.

Огромнейший вклад в дело развития космонавтики внес российский ученый, простой учитель уездного училища Калужской губернии Константин Эдуардович Циолковский. Размышляя о жизни в космическом пространстве, Циолковский начал писать научную работу под названием «Свободное пространство». О том, как выйти в космос, ученый пока не знал. В 1902 г. прислал в журнал «Новое обозрение» труд, сопроводив его записью: «Я разработал некоторые стороны вопроса о поднятии в пространство с помощью реактивного прибора, подобного ракете. Математические выводы, основанные на научных данных и много раз проверенные, указывают на возможность с помощью таких приборов подниматься в небесное пространство и, может быть, обосновывать поселения за пределами земной атмосферы».

В 1903 г. этот труд - «Исследование мировых пространств реактивными приборами» - был опубликован. В нем ученый разработал теоретические основы возможности полетов в космос. Эта работа и последующие труды, написанные Константином Эдуардовичем, дают основание нашим соотечественникам считать его отцом российской космонавтики.

Глубокие исследования возможности полетов человека в космос связаны с именами других российских ученых - инженера и самоучки. Каждый из них внес свой вклад в развитие космонавтики. Фридрих Артурович много работ посвятил проблеме создания условий для жизни человека в космосе. Юрий Васильевич разработал многоступенчатый вариант ракеты, предложил оптимальную траекторию вывода ракеты на орбиту. Эти идеи наших соотечественников используются в настоящее время всеми космическими державами, имеют общемировое значение.

Целенаправленное развитие теоретических основ космонавтики как науки и проведение работ по созданию реактивных аппаратов в нашей стране связано с деятельностью в 20–30-х годах Газодинамической лаборатории (ГДЛ) и Групп изучения реактивного движения (ГИРД), а в дальнейшем Реактивного научно-исследовательского института (РНИИ), сформированного на основе ГДЛ и московской ГИРД. В этих организациях активно работали, и другие, а также будущий Главный конструктор ракетно-космических систем, внесший основной вклад в создание первых ракет-носителей (РН), искусственных спутников Земли, пилотируемых космических кораблей (КК). Усилиями специалистов в этих организациях были разработаны первые реактивные аппараты с двигателями на твердом и жидком топливе, проведены их огневые и летные испытания. Было положено начало отечественной реактивной технике.

Работы и исследования по ракетной технике практически во всех возможных областях ее применения до Великой Отечественной войны и даже во время ВОВ велись в нашей стране достаточно широко. Кроме ракет с двигателями на различных видах топлива, был разработан и испытан ракетоплан РП-318-1 на основе планера СК-9 (разработки) и двигателя РДА-1-150 (разработки), показавший принципиальную возможность создания и перспективность реактивной авиации. Были разработаны также различные типы крылатых ракет (классов «земля-земля», «воздух-воздух» и другие), в том числе и с автоматической системой управления. Естественно, широкое развитие в предвоенное время получили только работы по созданию неуправляемых реактивных снарядов. Разработанная простая технология их массового производства позволила гвардейским минометным частям и соединениям внести существенный вклад в дело победы над фашизмом.

13 мая 1946 г. Советом Министров СССР было выпущено основополагающее постановление, предусматривающее создание всей инфраструктуры ракетной промышленности. Значительный упор был сделан, исходя из складывавшейся к этому времени военно-политической обстановки, на создании жидкостных баллистических ракет дальнего действия (БРДД) с перспективой достижения межконтинентальной дальности стрельбы и оснащения их ядерными боезарядами, а также на создании эффективной системы ПВО, базирующейся на зенитных управляемых ракетах и реактивных истребителях-перехватчиках.

Исторически создание ракетно-космической отрасли промышленности было связано с необходимостью разработки боевых ракет в интересах обороны страны. Таким образом, указанным постановлением были фактически созданы все необходимые условия быстрого развития отечественной космонавтики. Началась напряженная работа по становлению ракетно-космической промышленности и техники.

В историю человечества вошли два знаменательных события, связанных с развитием отечественной космонавтики и открывших эпоху практического освоения космоса: запуск на орбиту первого в мире искуственного спутника Земли (ИСЗ) (4 октября 1957 г.) и первый полет человека в космическом корабле по орбите ИСЗ (12 апреля 1961 г.). Роль головной организации в этих работах отводилась Государственному НИИ реактивного вооружения № 88 (НИИ-88), ставшему фактически «альма-матер» для всех ведущих специалистов ракетно-космической отрасли. В его недрах проводились теоретические, проектные и экспериментальные работы по перспективной ракетно-космической технике. Здесь же проектированием БРДД с жидкостным ракетным двигателем (ЖРД) занимался коллектив , возглавляемый Главным конструктором Сергеем Павловичем Королевым; в 1956 г. стал самостоятельной организацией - ОКБ-1 (сегодня это всемирно известная Ракетно-космическая корпорация (РКК) «Энергия» им.).

Выполняя задания правительства по созданию БРДД, нацеливал коллектив на одновременную разработку и выполнение программ изучения и освоения космоса, начиная с научных исследований верхних слоев атмосферы Земли. Поэтому за полетом первой отечественной баллистической ракеты Р-1 (10.10.1948 г.) последовали полеты геофизических ракет Р-1А, Р-1Б, Р-1В и других.

Летом 1957 г. было опубликовано важное правительственное сообщение о проведении в Советском Союзе успешных испытаний многоступенчатой ракеты. «Полет ракеты, - говорилось в сообщении, - проходил на очень большой, до сих пор не достигаемой высоте». Этим сообщением было отмечено создание грозного оружия межконтинентальной баллистической ракеты Р-7 - знаменитой «семерки».

Именно появление «семерки» обеспечивало благоприятную возможность выводить в космос искусственные спутники Земли. Но для этого необходимо было сделать очень много: разработать, построить и испытать двигатели общей мощностью в миллионы лошадиных сил, оснастить ракету сложнейшей системой управления, наконец, построить космодром, откуда ракете предстояло стартовать. Эту труднейшую задачу решили наши специалисты, наш народ, наша страна. Решили первыми в мире.

Все работы по созданию первого искусственного спутника Земли возглавлялись королевским ОКБ-1. Проект спутника несколько раз пересматривался, пока, наконец, не остановились на варианте аппарата, запуск которого мог быть осуществлен с помощью созданной ракеты Р-7 и в сжатые сроки. Факт вывода спутника на орбиту должен был быть зафиксирован всеми странами мира, для чего на спутнике смонтировали радиотехническую аппаратуру .

4 октября 1957 года с космодрома Байконур первый в мире ИСЗ был выведен на околоземную орбиту ракетой-носителем Р-7. Точное измерение параметров орбиты спутника осуществлялось наземными радиотехническими и оптическими станциями. Запуск и полет первого ИСЗ позволили получить данные о продолжительности его существования на орбите около Земли, прохождению радиоволн через ионосферу и влиянию условий космического полета на бортовую аппаратуру.

Развитие ракетно-космических систем шло бурными темпами. Полеты первых искусственных спутников Земли, Солнца, Луны, Венеры, Марса, достижение впервые автоматическими аппаратами поверхности Луны, Венеры, Марса и мягкая посадка на эти небесные тела, фотографирование обратной стороны Луны и передача на Землю изображения лунной поверхности, первый облет Луны и возвращение на Землю автоматического корабля с животными, доставка роботом образцов лунной породы на Землю, исследование поверхности Луны автоматическим луноходом, передача на Землю панорамы Венеры, пролет вблизи ядра кометы Галлея, полеты первых космонавтов - мужчин и женщин, одиночные и групповые в одноместных и многоместных кораблях-спутниках, первый выход космонавта-мужчины, а затем и женщины из корабля в открытый космос, создание первой пилотируемой орбитальной станции, автоматического грузового корабля снабжения, полеты международных экипажей, первые перелеты космонавтов между орбитальными станциями, создание системы «Энергия»-«Буран» с полностью автоматическим возвращением многоразового корабля на Землю, длительная работа первого многозвенного орбитального пилотируемого комплекса и многие другие приоритетные достижения России в освоении космоса вызывают у нас законное чувство гордости.

Первый полет в космос

12 апреля 1961 г. - этот день навсегда вошел в историю человечества: утром с космодрома «Бойконур» мощная ракета-носитель вывела на орбиту первый в истории космический корабль «Восток» с первым космонавтом Земли - гражданином Советского Союза Юрием Алексеевичем Гагариным на борту.

За 1 ч. 48 мин облетел земной шар и благополучно приземлился в окрестности деревни Смеловки Терновского района Саратовской области , за что был награжден Звездой Героя Советского Союза.

По решению Международной авиационной федерации (ФАИ) 12 апреля отмечается Всемирный день авиации и космонавтики. Праздник установлен указом Президиума Верховного Совета СССР от 9 апреля 1962 года.

После полёта Юрий Гагарин непрерывно совершенствовал своё мастерство как лётчик-космонавт, а также принимал непосредственное участие в обучении и тренировке экипажей космонавтов, в руководстве полётами КК «Восток», «Восход», «Союз».

Первый космонавт Юрий Гагарин окончил Военно-воздушную инженерную академию имени (1961–1968), вёл большую общественно-политическую работу , являясь депутатом Верховного Совета СССР 6-го и 7-го созывов, член ЦК ВЛКСМ (избран на 14-м и 15-м съездах ВЛКСМ), президентом Общества советско-кубинской дружбы.

С миссией мира и дружбы Юрий Алексеевич посетил многие страны, ему присуждены золотая медаль им. АН СССР, медаль де Лаво (ФАИ), золотые медали и почётные дипломы международной ассоциации (ЛИУС) «Человек в космосе» и Итальянской ассоциации космонавтики, золотая медаль «За выдающееся отличие» и почётный диплом Королевского аэроклуба Швеции, Большая золотая медаль и диплом ФАИ, золотая медаль Британского общества межпланетных сообщений, премия Галабера по астронавтике .

С 1966 г. являлся почётным членом Международной академии астронавтики. Награжден орденом Ленина и медалями СССР, а также орденами многих стран мира. Юрию Гагарину присвоены звания Герой Социалистического Труда ЧССР, Герой НРБ, Герой Труда СРВ.

Юрий Гагарин трагически погиб в авиационной катастрофе вблизи деревни Новоселове Киржачского района Владимирской области при выполнении тренировочного полёта на самолёте (вместе с летчиком Серегиным).

В целях увековечения памяти Гагарина город Гжатск и Гжатский район Смоленской области были переименованы соответственно в город Гагарин и Гагаринский район. Имя Юрия Гагарина присвоено Военно-воздушной академии в Монино, учреждена стипендия им. для курсантов военных авиационных училищ. Международной авиационной федерацией (ФАИ) была учреждена медаль им. Ю. А. Гагарина. В Москве, Гагарине, Звёздном городке, Софии - установлены памятники космонавту; существует мемориальный дом-музей в г. Гагарин, именем назван кратер на Луне.

Юрий Гагарин был избран почётным гражданином городов Калуга, Новочеркасск, Сумгаит, Смоленск, Винница, Севастополь, Саратов (СССР), София, Перник (НРБ), Афины (Греция), Фамагуста, Лимасол (Кипр), Сен-Дени (Франция), Тренчанске-Теплице (ЧССР).

Методика проведения 4 урока
"Основы космонавтики"

Цель урока: формирование знаний о теоретических и практических основах космонавтики.

Задачи обучения:

Общеобразовательные: формирование понятий:

О теоретических и практических предпосылках, задачах и методах космических исследований;
- о связи космонавтики с астрономией, физикой и другими естественно-математическими науками и с техникой;
- о средствах космонавтики - космических летательных аппаратах (КЛА);
- об основных типах реактивных ракетных двигателей (РДТТ, ЖРД, ЭРД, ЯРД);
- о траекториях, скоростях и особенностях движения КЛА, особенностях межпланетной и межзвездной навигации.

Воспитательные: формирование научного мировоззрения учащихся в ходе знакомства с историей человеческого познания. Патриотическое воспитание при ознакомлении с выдающейся ролью российской науки и техники в развитии космонавтики. Политехническое образование и трудовое воспитание при изложении сведений о практическом применении космонавтики.

Развивающие: формирование умений решать задачи на применение законов движения космических тел, формул Циолковского и космических скоростей к описанию движения КЛА.

Ученики должны знать :

О космонавтике (предмете, задаче и методах космонавтических исследований, связи ее с другими науками);
- о средствах космонавтики: основных типах КЛА, их устройстве и характеристиках;
- об основных типах ракетных двигателей, их устройстве и характеристиках
- формулу Циолковского, формулы и значения I, II, III космических скоростей (для Земли);
- о траекториях полета КЛА и связи между формой их орбит и скоростью движения.

Ученики должны уметь : решать задачи на применение формулы Циолковского и законов движения космических тел для расчета характеристик движения КЛА.

Наглядные пособия и демонстрации:

Диафильмы: "Элементы механики космических полетов".
Кинофильмы
: "Искусственные спутники Земли"; "Космические полеты".
Таблицы
: "Космические полеты"; "Космические исследования".
Приборы и инструменты
: прибор для демонстрации движения ИСЗ.

Задание на дом:

1) Изучить материала учебников:
- Б.А. Воронцов-Вельяминова : §§ 14 (4), 16 (4).
- Е.П. Левитана : §§ 7-11 (повторение).
- А.В. Засова, Э.В. Кононовича : § 11; упражнения 11 (3, 4)

2) Выполнить задания из сборника задач Воронцова-Вельяминова Б.А. : 174; 179; 180; 186.

3) Подготовить доклады и сообщения к уроку "История космонавтики".

План урока

Этапы урока

Методы изложения

Время, мин

Актуализация темы занятия

Рассказ

Формирование понятий о теоретических и практических предпосылках, задачах и методах космонавтических исследований

Лекция

7-10

Формирование понятий о средствах космонавтики и основных типах ракетных двигателей

Лекция

10-12

Формирование понятий о траекториях, скоростях и особенностях движения КЛА, особенностях межпланетной и межзвездной навигации

Лекция

10-12

Решение задач

Обобщение пройденного материала, подведение итогов урока, домашнее задание

Методика изложения материала

Данный урок лучше всего проводить в форме лекции, в ходе которой осуществляется систематизации, обобщение и развитие "донаучных" космонавтических знаний учеников и сведений по космонавтике и реактивному движению, изученных ими в курсах природоведения, естествознания и физики за весь период школьного обучения. Авторы пособия предлагают ограничиться разбором вопросов об орбитах и скорости ИСЗ, полетах КЛА к Луне и простейших траекториях межпланетных перелетов. Мы считаем необходимым дополнить и расширить этот материал, теоретизировать его так, чтобы в результате обучения школьник обрел целостное понятие о теоретических и практических основах космонавтики. Изложение материала должно опираться на ранее изученный материал по физике (основы классической механики: законы Ньютона, закон Всемирного тяготения, закон сохранения импульса, реактивное движение) и астрономии (астрометрии и небесной механики: законы Кеплера, сведения о космических скоростях, орбитах космических тел и возмущениях). Патриотический аспект воспитания реализуется в акцентировании внимания учащихся на достижениях отечественной науки и техники, вкладе российских ученых в возникновение, становление и развитие ракетостроения и космонавтики. Исторических подробностей следует избегать, откладывая их на последующее занятие.

Космонавтика - полеты в космическом пространстве; совокупность отраслей науки и техники, обеспечивающих исследование и освоение космического пространства и космических объектов и их систем с помощью различных космических летательных аппаратов (КЛА): ракет, искусственных спутников Земли (ИСЗ), автоматических межпланетных станций (АМС), космических кораблей (КК), пилотируемых или управляемых с Земли.

Теоретический фундамент космонавтики образуют:

1. Астрономия (астрометрия, небесная механика и астрофизика).

2. Теория космических полетов - космодинамика - прикладная часть небесной механики, исследующая траектории полета, параметры орбит КЛА и т. д.

3. Ракетная техника, обеспечивающая решение научно-технических проблем создания космических ракет, двигателей, систем управления, связи и передачи информации, научного оборудования и т.д.

4. Космическая биология и медицина.

Основным и вплоть до настоящего времени единственным средством передвижения в космическом пространстве является ракета. Законы ракетного движения выводятся на основе законов классической механики: кинематики и динамики (II закона Ньютона, закона сохранения импульса и т. д.).

Формула К. Э. Циолковского описывает движение ракеты в космическом пространстве без учета действия внешних условий и характеризует энергетические ресурсы ракеты:

, - число Циолковского, где m 0 - начальная, m к - конечная массы ракеты, w - скорость истечения отбрасываемой массы по отношению к ракете (скорость реактивной струи), g - ускорение свободного падения.

Рис. 73

Ракета-носитель (РН) - многоступенчатая баллистическая ракета для выведения в космос полезного груза (ИСЗ, АМС, КК и др.). Ракетоносителями обычно являются 2-4 ступенчатые ракеты, сообщающие полезному грузу I - II космическую скорость (рис. 73).

Ракетный двигатель (РД) - реактивный двигатель, предназначенный для ракет и не использующий для работы окружающую среду. В РД происходит не только преобразование подводимой к двигателю энергии (химической, солнечной, ядерной и т. д.) в кинетическую энергию движения рабочего тела двигателя, но и непосредственно создается движущая сила тяги в виде реакции струи вытекающего из двигателя рабочего тела. Таким образом РД представляет собой как бы сочетание собственно двигателя и движителя.

Удельная тяга РД определяется формулой: .

В настоящее время широкое применение нашли только химические РД.

Ракетный двигатель твердого топлива (РДТТ) применяется около 2000 лет - широко в ракетной артиллерии и ограниченно в космонавтике. Диапазон тяг РДТТ колеблется от грамм до сотен тонн (для мощных РД). Топливо в виде зарядов (вначале - дымного пороха, с конца XIX века - бездымного пороха, с середины ХХ века - специальные составы) полностью помещается в камеру сгорания. После запуска горение обычно продолжается до полного выгорания топлива, изменение тяги не регулируется. По конструкции и эксплуатации наиболее прост, но имеет ряд недостатков: низкая удельная тяга, однократность запуска и т. д. Устанавливается на некоторых РН США ("Скаут", "Тор", "Титан"), Франции и Японии. Применяется также в качестве тормозных, спасательных, корректирующих и т. д. систем (рис. 74).



Жидкостный ракетный двигатель (ЖРД) - РД, работающий на жидком ракетном топливе. Предложен К. Э. Циолковским в 1903 году. Основной двигатель современной космической техники. Тяга от долей грамма до сотен тонн. По назначению ЖРД делятся на основные (маршевые), тормозные, корректирующие и т. д. В качестве топлива применяют: из окислителей - кислород жидкий, четырехокись азота, перекись водорода; из горючих - керосин, гидразин, аммиак жидкий, водород жидкий. Наиболее перспективны сочетание жидких водорода и кислорода (РН "Энергия") (рис. 75).

Для увеличения удельной тяги перспективно использование ядерной энергии. Экспериментальные образцы ядерных ракетных двигателей (ЯРД ) разрабатывались с середины 60-х годов в СССР и США. В настоящее время Россия является единственным государством, располагающим маршевым ЯРД (рис. 76).

Продолжаются разработки электрических РД (ЭРД) - электротермических, электромагнитных, ионных. Первые экспериментальные образцы ЭРД были созданы в СССР в 1929-30 г.г.; в настоящее время ЭРД используются в качестве двигателей ориентации КЛА России и США. Маршевый ионный двигатель установлен на АМС, запущенной в конце 90-х гг. в США (рис. 77).

С точки зрения механики космического полета РД разделяются на:

1. Двигательные системы с ограниченной скоростью истечения w » 3 - 30 км/с, определяемой наибольшей температурой реактивной струи (химические, ядерные и т. д.). Они работают непродолжительное время (минуты, секунды) в атмосфере и вакууме на малых активных участках траектории полета (сотни км).

2. Системы ограниченной мощности с отдельным источником энергии, от которого зависит их эффективность (электрические и др.).

3. Системы с ограниченной тягой (парусные и радиоизотопные).

На активных участках полета движение КЛА зависит от работы его двигателей; на пассивных участках траекторий на движение КЛА влияют силы притяжения со стороны космических тел, давление света и солнечный ветер, а в верхних слоях атмосфер - аэродинамические силы трения.

Основные характеристики пассивного движения КЛА можно определить при решении задачи 2-х тел.

В центральном поле тяготения массивных космических тел КЛА движутся по кеплеровским орбитам, причем:

1. Траектория движения КЛА прямолинейна в случае, когда его начальная скорость u 0 = 0 и КЛА равноускоренно падает к центру притяжения.

2. КЛА движутся по эллиптическим траекториям, когда начальная скорость направлена под углом к центру притяжения, при . По эллиптическим орбитам вокруг Земли движутся ее ИСЗ, современные космические корабли и орбитальные станции, а также АМС, вращающиеся вокруг исследуемых ими планет.

3. По параболическим траекториям при u 0 = u II , когда конечная скорость КЛА в бесконечно удаленной точке пространства равна нулю.

4. По гиперболическим траекториям (u 0 > u II), почти неотличимым от прямолинейных на большом удалении от центра притяжения.

Траектории межпланетных полетов различаются по форме, длительности перелета, энергетическим затратам и другим факторам, зависящим от цели и особенностей космического полета. Интересно отметить, что КЛА практически никогда не движутся по прямой линии: траектории их движения (кроме некоторых идеализированных случаев) представляют собой отрезки кривых II порядка (окружности, эллипса, параболы и гиперболы), соединяющие орбиты космических тел или сами тела.

Выделяют 3 пассивных участка траекторий межпланетных полетов: 1) внутри "сферы действия" Земли, в которой движение КЛА определяется только силой земного притяжения; 2) от границы сферы действия Земли до границы сферы действия космического тела - цели полета, самому длинному и продолжительному, на котором движение КЛА определяется притяжением Солнца; 3) внутри сферы действия космического тела - цели полета.

Выше уже отмечалось, что для выхода из сферы действия Земли КЛА должен иметь скорость u > u II; . Добавочная скорость, которую находящийся на орбите искусственного спутника КЛА должен обрести для того, чтобы выйти из сферы действия Земли, называется скоростью выхода u в . , где r - расстояние от космического тела, R дÅ - радиус сферы действия Земли (R дÅ = 925000 км).

При запуске КЛА с поверхности Земли необходимо учитывать:

1) скорость и направление вращения Земли вокруг своей оси;
2) скорость и направление вращения Земли вокруг Солнца (u Å = 29,785 км/с).

Весьма сложен требующий больших энергетических затрат запуск ИСЗ, вращающихся в направлении, противоположном направлению вращения Земли вокруг своей оси; более сложен запуск КЛА по траектории, не лежащей в плоскости эклиптики.

Если скорость выхода совпадает по направлению со скоростью движения Земли v Å , орбита КЛА, кроме перигелия, лежит вне орбиты Земли (рис. 79в).
При противоположной направленности скорости u в орбита КЛА, за исключением афелия, лежит внутри орбиты Земли (рис. 79а).
При той же направленности и равенстве скоростей u в = u Å орбита КЛА становится прямой, по которой КЛА будет падать на Солнце около 64 суток (рис. 79г).
При u в = 0 орбита КЛА совпадает с орбитой Земли (рис. 79б).

Чем выше скорость u в КЛА, тем больше эксцентриситет его эллиптической орбиты. Путем сравнительно несложных расчетов определяется значение v в , необходимое для того, чтобы перигелий или афелий орбит КЛА лежал на орбите внешней или внутренней планет,.

Траектории полета КЛА, одновременно касающиеся орбит Земли и космических тел - целей межпланетного полета, называются гомановскими траекториями (в честь рассчитавшего их немецкого ученого В. Гоманна).

Для внешних планет: . Для внутренних планет: , где r - среднее расстояние планетного тела от Солнца.

Продолжительность перелета по гомановской траектории рассчитывается по формуле: средних солнечных суток.

При расчетах траектории межпланетного полета по гомановским траекториям необходимо учитывать взаимное расположение (начальную конфигурацию) Земли, Солнца и планеты-цели, характеристики и особенности движения планет по их орбитам. Например, полет к Марсу по кратчайшей гомановской траектории займет всего 69,9 d , к Юпитеру - 1,11 года, к Плутону - 19,33 года. Однако реально оптимальное взаимное положение Земли, Солнца и этих планет происходит исключительно редко и для уменьшения времени перелета требуется повысить u в , что требует дополнительных энергозатрат. Поэтому, в числе прочих причин, пилотируемые полеты к планетам Солнечной системы существенно дороже и сложнее, нежели исследование этих планет с помощью АМС, которые могут годами лететь к своим целям по самым экономичным траекториям. С учетом действия возмущений со стороны планет и Солнца АМС и космические корабли должны иметь двигатели для корректировки траектории движения.

При достижении сферы действия планеты-цели, для выхода на эллиптическую или круговую орбиту вокруг нее КЛА должен уменьшить скорость до значения, меньшего II космической для данной планеты.

В межпланетной навигации широко используется маневр КЛА в гравитационном поле планет Солнечной системы.

При движении в центральном поле тяготения массивного космического тела на КЛА действует сила притяжения со стороны этого тела, изменяющая скорость и направление движения КЛА. Направленность и величина ускорения КЛА зависят от того, насколько близко пролетит КЛА от космического тела и от угла j между направлениями входа и выхода КЛА в сферу действия этого тела.

Скорость КЛА изменяется на величину:

Наибольшее ускорение КЛА приобретает при движении по траектории, проходящей на минимальном расстоянии от космического тела, если скорость входа КЛА в сферу действия равна I космического скорости u I у поверхности этого тела, при этом .

При облете Луны КЛА может увеличить свою скорость на 1,68 км/с, при облете Венеры - на 7,328 км/с, при облете Юпитера - на 42,73 км/с. Скорость выхода КЛА из сферы действия планеты можно значительно увеличить включением двигателей в момент прохождения перицентра.

На рис. 80-81 приведены некоторые расчетные траектории межпланетных перелетов.

Астронавтика - раздел космонавтики, исследующий проблемы межзвездных полетов. В настоящее время изучает в основном теоретические проблемы механики перелета, поскольку современная наука не располагает сведениями для решения технических вопросов достижения звезд.

Для межзвездного полета КЛА должен выйти за пределы сферы действия Солнца, равной 9× 10 12 км. Межзвездные расстояния огромны: до ближайшей звезды 270000 а.е.; внутри описанной вокруг Солнца сферы радиусом 10 пк находится всего около 50 звезд.

В настоящее время в полет за пределы Солнечной системы отправились АМС "Пионер-10 и -11" и "Вояджер-1 и -2", которые удалятся на расстояние 1 светового года через тысячи лет.

Существующие и даже перспективные виды РД не пригодны или малопригодны для межзвездных перелетов, поскольку не могут обеспечить разгон КЛА до скорости свыше 0,1 скорости света с .

К ближайшим из звезд теоретически возможны лишь полеты "в один конец" автоматических межзвездных зондов (АМЗ) или пилотируемые перелеты с целью колонизации подходящих планет с экипажем в состоянии "обратимой смерти" (гибернации) или со сменой поколений внутри корабля, что требует решения множества не только технических, но и этических, психологических, биологических проблем (экипаж никогда не возвратится на Землю; большую часть жизни или даже всю жизнь при смене поколений ему предстоит провести внутри корабля; необходимо создание полностью замкнутой экосистемы КЛА и т. д.); еще до старта земные астрономические наблюдения должны дать гарантии существования планет земной группы с подходящими для жизни условиями у звезды - цели полета (иначе полет теряет смысл).

"Голубой мечтой" современной астронавтики является теоретически идеальный квантовый (фотонный) РД с w = c - единственно пригодный для осуществления межзвездных перелетов в пределах Галактики (рис. 78).

Движение физических тел со скоростями, близкими к скорости света, рассматриваются в общей теории относительности (ОТО), исследующей пространственно-временные закономерности любых физических процессов.

В рамках ОТО формула Циолковского обобщается и принимает вид: ,

где z - число Циолковского, m 0 - начальная, m 1 - конечная массы КЛА, u 1 - конечная скорость КЛА в земной системе отсчета, w - скорость реактивной струи относительно корабля.

Скорости света не сможет достигнуть даже фотонный звездолет при w = c , поскольку:.

Полет со скоростью выше скорости света согласно современной науке невозможен для любых материальных объектов. Однако (теоретически) звездолет может перемещаться со скоростью, близкой скорости света, .

Возможны варианты межзвездного полета:

1. Полет в 3 этапа: разгон КЛА до наибольшей скорости; полет по инерции с выключенными двигателями; торможение до нулевой скорости.
2. Полет в 2 этапа с постоянным ускорением: первую половину пути КЛА увеличивает скорость с ускорением g~ gÅ = 10 м/с 2 , а затем начинает торможение с тем же ускорением.

Согласно основным положениям ОТО для наблюдателя на борту КЛА при приближении к скорости света все физические процессы будут замедляться в раз, и во столько же раз будут сокращаться расстояния вдоль направления движения КЛА: пространство и время как бы "сжимаются". В системе отсчета корабля он будет неподвижен, а относительно Земли и цели полета будет перемещаться со скоростью u £ c .

Собственное (корабельное) время полета и независимое время, протекающее с момента старта на Земле, рассчитываются по разным формулам: , где и - функции гиперболического косинуса и гиперболического синуса, r - расстояние до цели полета.

При непрерывном ускорении g = 10 м/с 2 полет до звезды a Центавра займет по корабельным часам 3,6 года, по земным - 4,5 года; полет к центру Галактики займет по корабельным часам Т к = 19,72 года, по земным Т Å = 27000 лет; полет к галактике М31 ("туманности Андромеды"), ближайшей из спиральных галактик, займет соответственно Т к = 28 лет и Т Å = 3,5 миллиона лет!

Такова плата за межзвездные полеты согласно "парадоксу близнецов": облетевшие пол-Галактики и постаревшие на десятки лет астронавты возвратятся на Землю тысячи и миллионы лет спустя после старта. Помимо чисто этических проблем вернувшихся из, по сути, "полета в один конец" пришельцев из далекого прошлого в мир будущего, встает важная проблема ценности доставленной астронавтами информации: за время полета наука на Земле не стоит на месте!

Очень важны энергетические проблемы межзвездных полетов: если для достижения II космической скорости межпланетного пилотируемого перелета Земля - Марс будет затрачена энергия около 8,4× 10 9 кВт× ч (вырабатываемой электростанцией мощностью 100 МВт за 8,5 часов), то для разгона КЛА до 0,2с потребуется энергия 10 15 кВт× ч - вся энергия, вырабатываемая электростанциями Земли за 10 лет. Увеличение скорости до 0,4 с влечет увеличение расхода энергии в 16 раз при 100 % КПД двигателей! Запасы топлива для термоядерного РД составят свыше 99 % массы КЛА. Для синтеза антивещества для единственного полета фотонного звездолета требуется такое количество энергии, что современная наука не может указать его источника в переделах Солнечной системы.

Таким образом, по законам физики на современном уровне развития земной цивилизации межзвездные пилотируемые полеты КЛА практически невозможны. Исследования ближайших звезд межзвездными беспилотными АМЗ вполне возможны (в настоящее время в США и России разрабатываются проекты запуска АМЗ к Проксиме Центавра, звезде Барнарда и некоторым другим объектам в середине XXI века). Имеющие несколько десятков тонн массы полезной нагрузки АМЗ будут разгоняться до скорости 0,1-0,2с солнечными, радиоизотопными или термоядерными РД, время полета составит десятки или даже сотни лет.

Изученный материал закрепляется в ходе решения задач:

Упражнение 10:

1. Почему проще запустить КЛА к Плутону, нежели к Солнцу?

2. Возможна ли излюбленная в фантастике 60-х годов ситуация, когда КЛА с вышедшим из строя двигателем притягивается и падает на Солнце?

3. Где и почему выгоднее располагать космодромы: на полюсах или на экваторе Земли?

4. Определите скорость выхода КЛА за пределы Солнечной системы. Как долго он будет лететь к ближайшей из звезд?

5. Почему внутри космического корабля на пассивном участке траектории полета наступает невесомость?

6. Какова скорость АМС, вращающейся по круговой орбите вокруг Юпитера на расстоянии: а) 2000 км; б) 10000 км от планеты?

7. Изобразите на чертеже конфигурацию Земли, Солнца и Марса, считая их орбиты круговыми, при полете советских АМС "Марс-2" и "Марс-3", достигших Марса 21.11.1971 года и 2.12.1971 года после 192 и 188 суток полета, если противостояние планет произошло 10 августа 1971 года.

По мнению В.В. Радзиевского следует обратить внимание учителей и учащихся "на огромное практическое значение астрономии в связи с активным освоением космоса, на роль космонавтики в решении экологических проблем загрязнения окружающей среды (перенос загрязняющих атмосферу предприятий в космос, выброс в космос вредных отходов производства, демографические перспективы)… Необходимо усилить элементы космонавтики в самой программе, ввести вопросы: закон сохранения энергии в задаче 2-х тел (элементарный вывод)...

В 60-80-е годы в школах Советского Союза преподавался факультативный курс А.Д. Марленского "Основы космонавтики" (IX класс, 70 часов учебных занятий по 2 ч. в неделю) . Сведения о его структуре, содержании и планировании занятий могут пригодиться современному учителю физики и астрономии для использования соответствующего материала на уроках физики и астрономии (особенно в физико-математических классах) и внеклассных занятиях:

1) История космонавтики (2 ч.) (Первые фантастические проекты космических полетов. К.Э. Циолковский – основоположник научной космонавтики. Основные этапы развития ракетной техники. Запуск первого советского ИСЗ и начало космической эры. Полет человека в космос).

2) Движение и устройство ракет (4 ч.) (Принцип действия ракеты. Понятие о механике тел переменной массы. Формула Циолковского. Основные части и числовые характеристики одноступенчатой ракеты. Многоступенчатые ракеты. Ракетные двигатели и топлива). Начинать с повторения закона сохранения импульса; с опорой на него проанализировать одноимпульсный выброс массы из ракеты. Рассмотреть серию последовательных выбросов и показать, что результирующая скорость ракеты при однонаправленных выбросах равна сумме скоростей, которые она получает при каждом выбросе массы. Сообщить формулу Циолковского (без подробного вывода, но с детальным анализом физического смысла и решением соответствующих задач). Рассмотреть движение ракеты с точки зрения законов динамики, в зависимости от реактивной силы. Продемонстрировать на опытах возникновение реактивной силы на примерах вытекающих водяных струй и показать, как можно изменить силу тяги (приводится схема установки). Ознакомить учеников с числовыми характеристиками одноступенчатых и многоступенчатых РН. Предложить (дома) разработать проекты ракет с различными характеристиками, разобрать на следующем уроке. Работа РД изучается в общих чертах. Рассматриваются схемы их устройства, подачи топлива и графики изменения характеристик (скорость, температура и давление продуктов сгорания вдоль оси РД). Обратить внимание на основные данные РД и ракетного топлива в сравнении с тепловыми двигателями и топливом наземного транспорта. Полезно продемонстрировать действующие модели ракет.

3) Свободное движение ракеты в поле тяготения (8 ч) (Центральное поле тяготения. Задача 2-х тел. Закон сохранения механической энергии при движении в поле тяготения. Гравитационный параметр. Формула скорости тела, движущегося по эллиптической орбите. Траектории движения в поле тяготения (кеплеровы орбиты). Законы Кеплера. Круговая скорость, скорость освобождения, гиперболический избыток скорости. Понятие о возмущенном движении. Сфера действия. Невесомость). Повторить закон Всемирного тяготения применительно к 2 материальным точкам и подробно проанализировать его формулу; указать на возможность представления массивных космических тел в виде материальных точек. Формируется представление о поле тяготения как поле центральных сил и его характеристиках: ускорения свободного падения (позволяют определять силовые воздействия центрального поля на тела, вносимые в разные точки поля) и потенциалы (для определения энергетических затрат при различных перемещениях тел в этом поле). Обосновать выбор нулевого значения гравитационного потенциала для бесконечно удаленных точек в этом случае гравитационные потенциалы всех космических тел отсчитываются от нулевого уровня и их легко сравнивать. Сравнивая гравитационные потенциалы точек на поверхности планет, можно судить о величине работы для удаления тела из данной точки в бесконечность (введение понятия о II космической скорости). Решение задачи 2-х тел опирается на законы сохранения энергии и момента импульса (следует сформировать понятие о законе сохранения момента импульса на основе демонстрации скамьи Жуковского, определения понятия момента импульса и ряде опытов)

4) Движение ракеты под действием тяги (6 ч.) (Вывод КА на орбиту. Потери скорости. Начальная и суммарная характеристические скорости. Управление КА. Коррекции траектории. Перегрузки в полете. Понятие о космической навигации. Инерциальная, астро- и радионавигация. Ориентация и стабилизация КА). 5) Искусственные спутники Земли (8 ч.) (Орбиты ИСЗ. Возмущение орбит, вызванное несферичностью Земли, сопротивлением атмосферы, притяжением Луны и Солнца. Движение ИСЗ относительно поверхности Земли. Вывод ИСЗ на орбиту. Многоимпульсные маневры. Встреча на орбите. Орбиты ожидания. Гомановские переходы. Стыковка. Орбитальные станции. Спуск с орбиты. Основные физические явления при входе в атмосферу. Баллистический и планирующий спуски). 6) Полеты к Луне и планетам (8 ч.) (Траектории полетов к Луне. Искусственные спутники луны. Посадка на Луну. Траектории полета к планетам. Оптимальные траектории. Окна запуска. Коррекции траектории. Многоимпульсные траектории. Использование гравитационного поля планет для изменения траекторий КА. Облет планет. Посадка на планеты. Использование атмосферы при посадке. Коридор входа. Жесткая и мягкая посадки). 7) Условия космического полета (2 ч.) (Радиационная опасность. Метеоритная опасность. Способы защиты. Жизнеобеспечение в КК. Космическая психология. Ритм жизни в КК. Влияние невесомости и перегрузки на организм). 8) Научное и практическое использование космонавтики (6 ч.) (Успехи СССР в использовании космоса. Научная аппаратура ИСЗ, КА и АМС. Исследования Земли, околоземного космического пространства, Луны, планет, межпланетного пространства средствами космонавтики. Практическое использование космонавтики: в геодезии, метеорологии, для навигации, связи, разведки земных ресурсов). 9) Перспективы космонавтики (2 ч.) (Проекты дальнейших космических полетов в Солнечной системе. Проекты освоения Луны и планет. Возможность межзвездных перелетов). 10 часов практических работ (в том числе астрономических наблюдений).

<< Предыдущая наблюдения - лабораторные работы - практические работы - учебная программа - учебные пособия - лекции - педагогический эксперимент - дидактика - контрольные работы - задача
См. также: Все публикации на ту же тему >>

Вашему вниманию предлагаю разработку урока посвященного Дню космонавтики, с использованием компьютерной презентации. Данный урок носит в основном информативный характер, поэтому может проводиться и разных классах. На этом уроке учащимся рассказывается об основных этапах развития космонавтики и современных исследованиях планет.

Урок был подготовлен учителем физики Батеневой О.М.

Цель: вспомнить, перечислить этапы развития космонавтики, конструкторские изобретения ставшие решающими факторами в деле “победы человека над космосом” и принесшие славу и приоритет советской науке.

Воспитательная: воспитывать патриотизм, чувство гордости за достижения человеческого разума и за достижения советской науки и народа, самоотверженно кующего материальную основу “победы человека над космосом”; воспитывать волю к победе на исторических примерах.

Развивающая: развивать интерес к физике, технике и отечественной истории. Развивать навыки самостоятельной работы с дополнительной литературой и Интернетом, находить и отбирать требуемую информацию, отбрасывая всю постороннюю, анализировать полученные сведения, приводить их в систему.

Материально-дидактическое оснащение:

“Человечество не останется вечно на Земле,
но в погоне за светом и пространством сначала
робко проникнет за пределы атмосферы,
а затем завоюет себе все
околосолнечное пространство”.

К.Э. Циолковский

Ход урока

1. Сегодня наш урок посвящается Дню космонавтики, который отмечается 12 апреля. На этом уроке я расскажу вам о наиболее значимых этапах развития космонавтики.

Этап теоретической космонавтики.

Рассказ об одном из основоположников космонавтики К.Э. Циолковском и его теоретических расчетах полетов космических ракет.

ЦИОЛКОВСКИЙ Константин Эдуардович (1857-1935) - русский советский учёный и изобретатель в области аэродинамики, ракетодинамики, теории самолёта и дирижабля; основоположник совр. космонавтики.

1903 г. Публикация труда "Исследование мировых пространств реактивными приборами". В этом пионерском труде Циолковский:

  • впервые в мире описал основные элементы реактивного двигателя;
  • пришёл к выводу, что твёрдые виды топлива не годится для космических полётов, и предложил двигатели на жидком топливе;
  • полностью доказал невозможность выхода в космос на аэростате или с помощью артиллерийского орудия;
  • вывел зависимость между весом топлива и весом конструкций ракеты для преодоления силы земного тяготения;
  • высказал идею бортовой системы ориентации по Солнцу или другим небесным светилам;
  • проанализировал поведение ракеты вне атмосферы, в среде, свободной от тяготения.

О своём смысле жизни Циолковский говорил так:

“Основной мотив моей жизни – не прожить даром, продвинуть человечество хоть немного вперёд. Вот почему я интересовался тем, что не давало мне ни хлеба, ни силы, но я надеюсь, что мои работы, может быть скоро, а может быть и в отдалённом будущем, дадут горы хлеба и бездну могущества…человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе всё околосолнечное пространство”.

Так на берегах Оки взошла заря космической эры. Правда, результат первой публикации оказался совсем не тот, какого ожидал Циолковский. Ни соотечественники, ни зарубежные ученые не оценили исследования, которым сегодня гордится наука. Оно просто на эпоху обогнало свое время.

Этап практической космонавтики.

Рассказ о строительстве и испытаниях космических аппаратов под руководством С.П. Королева.

КОРОЛЕВ Сергей Павлович (1907-1966) - советский ученый и конструктор в области ракетостроения и космонавтики, главный конструктор первых ракет-носителей, ИСЗ, пилотируемых космических кораблей, основоположник практической космонавтики, академик АН СССР, член президиума АН СССР, дважды Герой Социалистического Труда...

Королев - пионер освоения космоса. С его именем связана эпоха первых замечательных достижений в этой области. Талант выдающегося ученого и организатора позволил ему на протяжении многих лет направлять работу многих НИИ и КБ на решение больших комплексных задач. Научные и технические идеи Королева нашли широкое применение в ракетной и космической технике. Под его руководством создан первый космический комплекс, многие баллистические и геофизические ракеты, запущена первая в мире межконтинентальная баллистическая ракета, ракета-носитель "Восток" и ее модификации, исскуственный спутник Земли, осуществлены полеты КК "Восток" и "Восход", на которых впервые в истории совершен космический полет человека и выход человека в космическое пространство; созданы первые КА серий "Луна", "Венера", "Марс", "Зонд", ИСЗ серий "Электрон", "Молния-1" и некоторые ИСЗ серии "Космос"; разработан проект КК "Союз". Не ограничивая свою деятельность созданием РН и КА, Королев, как главный конструктор осуществлял общее техническое руководство работами по первым космическим программам и стал инициатором развития ряда прикладных научных направлений, обеспечивающих дальнейший прогресс в создании РН и КА. Королев воспитал многочисленные кадры ученых и инженеров.

Учёными космической эры по праву можно назвать Николая Егоровича Жуковского, Ивана Всеволодовича Мещерского, Фридриха Артуровича Цандера, Мстислава Всеволодовича Келдыша, и многих других.

Первый искусственный спутник Земли и полеты животных.

Рассказ о запуске первого искусственного спутника Земли (ИСЗ) 4 октября 1957 года и о полетах различных животных в космос.

04.10.1957. С космодрома Байконур осуществлен пуск ракеты-носителя "Спутник", которая вывела на околоземную орбиту Первый в мире искусственный спутник Земли. Этот старт открыл космическую эру в истории человечества.

19.08.1960 был запущен Второй корабль-спутник типа "Восток", с собаками Белка и Стрелка, а вместе с ними 40 мышей, 2 крысы, различные мухи, растения и микроорганизмы 17 раз облетели вокруг Земли и приземлились.

Хэм - первый шимпанзе-астронавт. 31 января 1961 года Хэм был помещён в космический корабль “Меркурий-Редстоун 2” и запущен в космос с космодрома на мысе Канаверал. Полёт Хэма был последней репетицией перед первым суборбитальным полётом американского астронавта в космос

Впервые в мире живые существа, побывав в Космосе, возвратились на Землю после орбитального полёта. Через несколько месяцев у Стрелки родились шесть здоровых щенков. Одного из них попросил лично Никита Сергеевич Хрущёв. Он отправил его в подарок Жаклин Кеннеди, жене президента США Джона Кеннеди.
Целью эксперимента по запуску животных в космос была проверка эффективности систем жизнеобеспечения в космосе и исследование космического излучения на живые организмы.

Свершение века 12 апреля 1961 года. Юрий Гагарин – первый человек в космосе. (фильм V1.asf; Tacc.wav) После просмотра фильма включить звуковой значек.

Рассказ о полетах в космос: первого человека - Ю.А. Гагарина, первой женщины – В.В. Терешковой.

12.04.1961. Этот день стал днем торжества человеческого разума. Впервые в мире космический корабль с человеком на борту ворвался в просторы Вселенной. Ракета-носитель "Восток" вывела на околоземную орбиту советский космический корабль "Восток" с советским космонавтом Юрием Гагариным. После полёта на корабле “Восток” Ю. А. Гагарин стал самым известным человеком на планете. О нём писали все газеты мира.

16 июня 1963 года в 12 часов 30 минут по московскому времени в Советском Союзе на орбиту спутника Земли выведен космический корабль "Восток-6" впервые в мире пилотируемый женщиной - гражданкой Советского Союза космонавтом Терешковой Валентиной Владимировной.

В этом полете будет продолжено изучение влияния различных факторов космического полета на человеческий организм, в том числе будет проведен сравнительный анализ воздействия этих факторов на организмы мужчины и женщины.

Специально для полёта Терешковой была разработана конструкцию скафандра приспособленная для женского организма, так же некоторые элементы корабля были изменены под возможности женщины. Этот полёт доказывал надёжность советской космической техники, которая символизировала надёжность всего советского строя.

Выход человека в открытое космическое пространство. (фильм vskh-2.asf) Одновременно с началом показа фильма включить звуковой значек.

Рассказ о первом выходе А.А. Леонова в открытый космос в марте 1965 года.

Первый выход в космос был совершён советским космонавтом Алексеем Архиповичем Леоновым 18 марта 1965 года с борта космического корабля “Восход-2” с использованием гибкой шлюзовой камеры.

Во время выхода проявил большое мужество, особенно в нештатной ситуации, когда разбухший космический скафандр препятствовал возвращению космонавта в космический корабль. Выход в открытый космос продолжался 12 минут 9 секунд, по его итогам был сделан вывод о возможности человека выполнять различные работы в открытом космосе. При возвращении космического корабля на Землю отказала система ориентации и космонавты, вручную сориентировав корабль, совершили посадку в запасном районе.

Рассказ о космических полетах к другим планетам (Венера, Марс, Луна, Титан, Сатурн).

Маленький шаг для одного человека
большой шаг для всего человечества

сказал Нил Армстронг, ступая на поверхность Луны

Сама программа пилотируемого полёта на Луну называлась “Аполлон”. Луна - единственное внеземное тело, на котором побывал человек. Первая посадка произошла 20 июля 1969 года ; последняя - в декабре 1972 года. Первым человеком, ступившим на поверхность Луны, стал американец Нил Армстронг (21 июля 1969 года). Луна также - единственное небесное тело, образцы которого были доставлены на Землю.

СССР отправил на Луну два радиоуправляемых самоходных аппаратов, “Луноход-1” в ноябре 1970 года и “Луноход-2” в январе 1973.

“Пионер-10” - беспилотный космический аппарат НАСА, предназначенный, главным образом, для изучения Юпитера . Это был первый аппарат, пролетевший мимо Юпитера и сфотографировавший его из космоса. Аппарат-“близнец” “Пионер-11” исследовал также Сатурн.

В 1978 году в космос отправились последние два зонда серии “Пионер”. Это были зонды для исследования Венеры “Пионер-Венера-1” и “Пионер-Венера-2”

Международная космическая станция (МКС) - международная орбитальная станция, используемая как многоцелевая космическая лаборатория.

К концу 2004 на станции побывало 10 долгосрочных экспедиций

На станции проводят научные исследования космоса, атмосферы и земной поверхности, изучение поведения человеческого организма в длительных космических полетах, разрабатывают технологии получения и анализа свойств новых материалов и биопрепаратов, а также отрабатывают пути и методы дальнейшего освоения космического пространства.

2. В конце урока учащиеся отвечают на вопросы диагностического задания. Происходит проверка знаний, используя слайд с правильными ответами. Приложение 2.

Правильные ответы

1. 1903 г К.Э. Циолковский

5. 16Июня 1963 г.В.Н. Терешкова

Задания для учащихся.

Используя Интернет-ресурсы, подготовьте более подробное информационное сообщение о том, что вас заинтересовало в данной теме.

Учащиеся отвечают на вопросы рефлексивного теста. Приложение 2.

Рефлексивный тест

  1. Я узнал много нового и интересного.
  2. Что понравилось на уроке? Почему?
  3. Что не понравилось?
  4. Нужна ли мне физика для повышения моего интеллектуального уровня?
  5. Нужна ли мне физика для моей дальнейшей профессиональной деятельности?

Литература:

  1. www.cosmoworld.ru
  2. www.kocmoc.info
  3. ru.wikipedia.org1
  4. www.specevideo.ru
  5. www.h-cosmos.ru

Пожалуй, развитие космонавтики берёт своё начало в фантастике: людям всегда хотелось летать — не только в воздухе, но и по бескрайним космическим просторам. Как только люди убедились, что земная ось не способна налететь на небесный купол и пробить его, самые пытливые умы начали задаваться вопросом — а что же там, выше? Именно в литературе можно встретить немало упоминаний всевозможных способов отрыва от Земли: не только природные явления типа урагана, но и вполне конкретные технические средства — воздушные шары, сверхмощные пушки, ковры-самолёты, ракеты и прочие костюмы-суперджеты. Хотя первым более или менее реалистичным описанием лётного средства можно назвать миф об Икаре и Дедале.


Постепенно из полёта подражательного (то есть полёта, основанного на подражании птицам) человечество перешло к полёту, основанному на математике, логике и законах физики. Значительная работа авиаторов в лице братьев Райт, Альберта Сантос-Дюмона, Гленна Хаммонда Кёртиса лишь укрепили веру человека в то, что полёт возможен, и рано или поздно холодные мерцающие точки на небе станут ближе, и вот тогда…

Первые упоминания о космонавтике как о науке начались в 30-х годах двадцатого века. Сам термин «космонавтика» появился в названии научного труда Ари Абрамовича Штернфельда «Введение в космонавтику». На родине, в Польше, его трудами научное сообщество не заинтересовалось, зато интерес проявили в России, куда автор и переехал впоследствии. Позже появились другие теоретические работы и даже первые эксперименты. Как наука космонавтика сформировалась лишь в середине 20 века. И кто бы что ни говорил, а дорогу в космос открыла наша Родина.

Основоположником космонавтики считается Константин Эдуардович Циолковский. Когда-то он говорил: «Сначала неизбежно идут: мысль, фантазия, сказка, а за ними шествует точный расчет ». Позже, в1883 году, он высказал мысль о возможности использования реактивного движения для создания межпланетных летательных аппаратов. Но было бы неверно не упомянуть такого человека, как Николай Иванович Кибальчич, который выдвинул саму идею возможности построения ракетного летательного аппарата.

В 1903 году Циолковский публикует научную работу «Исследование мировых пространств реактивными приборами», где он приходит к выводу, что ракеты на жидком топливе могут вывести человека в космос. Расчёты Циолковского показали, что полёты в космос — дело ближайшего будущего.

Чуть позже к работам Циолковского добавились труды зарубежных ракетостроителей: в начале 20-х годов немецкий учёный Герман Оберт также изложил принципы межпланетного полёта. В середине 20-х американец Роберт Годдард начал разрабатывать и построил успешный прототип жидкостного ракетного двигателя.

Труды Циолковского, Оберта и Годдарда стали своеобразным фундаментом, на котором выросло ракетостроение и, позднее, вся космонавтика. Основная научно-исследовательская деятельность велась в трёх странах: в Германии, США и СССР. В Советском Союзе исследовательские работы вели Группа изучения реактивного движения (Москва) и Газодинамическая лаборатория (Ленинград). На их базе в 30-х годах был создан Реактивный институт (РНИИ).

В Германии работали такие специалисты, как Йоханнес Винклер и Вернер фон Браун. Их исследования в области реактивных двигателей дали мощный толчок ракетостроению после второй мировой войны. Винклер долго не прожил, а фон Браун переехал в США и долгое время был самым настоящим отцом космической программы Соединённых Штатов.

В России же дело Циолковского продолжил другой великий русский учёный, Сергей Павлович Королёв.

Именно он создал группу изучения реактивного движения и именно в ней создали и успешно запустили первые отечественные ракеты — ГИРД 9 и 10.

О технологиях, людях, ракетах, развитии двигателей и материалов, решённых проблемах и проделанном пути можно написать столько, что статья получится длиннее расстояния от Земли до Марса, так что опустим часть подробностей и перейдём к самой интересной части — практической космонавтике.

4 октября 1957 года человечество совершило первый успешный запуск космического спутника. Впервые творение рук человеческих проникло за пределы земной атмосферы. В этот день весь мир был поражён успехами советской науки и техники.

Что было доступно человечеству в 1957 году из вычислительной техники? Ну, стоит отметить, что в 1950-х в СССР были созданы первые вычислительные машины, а только в 1957 году в США появился первый компьютер на базе транзисторов (а не радиоламп). Ни о каких гига-, мега- и даже килофлопсах речи не шло. Типичный компьютер того времени занимал пару комнат и выдавал «лишь» пару тысяч операций в секунду (ЭВМ Стрела).

Прогресс космической отрасли был колоссален. Всего за несколько лет точность систем управления ракет-носителей и космических аппаратов выросла настолько, что из погрешности в 20-30 км при выводе на орбиту в 1958 году человек сделал шаг в посадку аппарата на Луне в пятикилометровый радиус к середине 60-х.

Дальше — больше: в 1965 году стало возможным передать на Землю фотографии с Марса (а это расстояние в более чем 200 000 000 километров), а уже в 1980 году — с Сатурна (расстояние — 1 500 000 000 километров!). Говоря о Земле — сейчас совокупность технологий позволяет получать актуальную, достоверную и детальную информацию о природных ресурсах и состоянии окружающей среды

Вместе с освоением космоса шло развитие всех «попутных направлений» — космической связи, телевещания, ретрансляции, навигации и так далее. Спутниковые системы связи стали охватывать практически весь мир, делая возможной двустороннюю оперативную связь с любыми абонентами. Сейчас спутниковый навигатор есть в любой машине (даже в игрушечной), а ведь тогда существование подобного казалось чем-то невероятным.

Во второй половине 20 века началась эра пилотируемых полётов. В 1960-1970-х годах советские космонавты продемонстрировали способность человека работать вне космического корабля, а с 1980-1990-х гг люди стали жить и работать в условиях невесомости чуть ли не годами. Понятное дело, что каждое такое путешествие сопровождалось множеством всевозможных экспериментов — технических, астрономических и так далее.

Огромный вклад в развитие передовых технологий внесли проектирование, создание и использование сложных космических систем. Автоматические космические аппараты, отправляемые в космос (в том числе к другим планетам), по сути дела, являются роботами, которыми управляют с Земли с помощью радиокоманд. Необходимость создания надёжных систем для решения подобных задач привела к более полному пониманию проблемы анализа и синтеза сложных технических систем. Сейчас такие системы находят применение как в космических исследованиях, так и во многих других областях человеческой деятельности.

Взять, к примеру, погоду — привычное дело, в мобильных аппсторах для её вывода существуют десятки и даже сотни приложений. Но где с завидной периодичностью брать снимки облачного покрова Земли, не с самой Земли же? ;) Вот-вот. Сейчас же почти все страны мира для информации о погоде используют космические метеоданные.Не так фантастически, как 30-40 лет назад звучат слова «космическая кузница». В условиях невесомости можно организовать такое производство, какое просто неосуществимо (или не выгодно) разворачивать в условиях земной гравитации. Например, состояние невесомости можно использовать для получения сверхтонких кристаллов полупроводниковых соединений. Такие кристаллы найдут применение в электронной промышленности для создания нового класса полупроводниковых приборов.


Картинки из моей статьи о производстве процессоров

В отсутствие гравитации свободно парящий жидкий металл и другие материалы легко деформировать слабыми магнитными полями. Это открывает путь для получения слитков любой наперед заданной формы без их кристаллизации в изложницах, как это делается на Земле. Особенность таких слитков - почти полное отсутствие внутренних напряжений и высокая чистота.

Интересные посты с Хабра: habrahabr.ru/post/170865 + habrahabr.ru/post/188286
На данный момент во всём мире существует (точнее, функционирует) более десятка космодромов с уникальными наземными автоматизированными комплексами, а также испытательными станциями и всевозможными сложными средствами подготовки к пуску космических аппаратов и ракетоносителей. В России известными на весь мир являются космодромы «Байконур» и «Плесецк», ну и, пожалуй, «Свободный», с которого периодически осуществляются экспериментальные запуски.

В общем… уже сейчас в космосе делается столько всего — иной раз что-нибудь расскажут, не поверишь:)

ПОНАЕХАЛИ!

Москва, метро ВДНХ — с какой стороны ни посмотри, а памятник «Покорителям космоса» нельзя не заметить.

Но не многие знают, что в цокольной части 110-метрового монумента находится интереснейший музей космонавтики, в котором можно во всех подробностях узнать об истории науки: там вам и «Белка» со «Стрелкой», и Гагарин с Терешковой, и скафандры космонавтов с луноходами…

В музее находится (выполненный в миниатюре) Центр управления полётами, где можно наблюдать Международную космическую станцию в реальном времени и осуществлять переговоры с экипажем. Интерактивная кабина «Буран» с системой подвижности и панорамным стереоизображением. Интерактивный познавательный и обучающий класс, выполненный в виде кают. В специальных зонах размещены интерактивные экспонаты, которые включают в себя тренажёры, идентичные тренажёрам в Центре подготовки космонавтов имени Ю. А. Гагарина: тренажёр транспортного космического корабля сближения и стыковки, виртуальный тренажёр международной космической станции, тренажёр пилота поискового вертолета. Ну и, конечно же, куда без всяких кино- и фотоматериалов, архивных документов, личных вещей деятелей ракетно-космической отрасли, предметов нумизматики, филателии, филокартии и фалеристики, произведений изобразительного и декоративно-прикладного искусства…

Суровая реальность

Во время написания этой статьи было приятно освежить в памяти историю, но сейчас всё как-то не так оптимистично, что ли — совсем недавно мы были супербизонами и лидерами космического пространства, а сейчас даже спутник вывести на орбиту не можем… Тем не менее, мы живём в очень интересное время — если раньше малейшие технические продвижения шли годами и десятилетиями, то сейчас технологии развиваются значительно стремительней. Взять тот же интернет — ещё не забыты те времена, когда еле-еле открывались WAP-сайты на двухцветных дисплейчиках телефонов, а сейчас мы можем откуда угодно делать на телефоне (в котором и пикселей-то не видно) что угодно. ЧТО УГОДНО. Пожалуй, лучшим завершением данной статьи будет известное выступление американского комика Louis C. K, «Всё превосходно, но все недовольны»:


Мысли о проникновении человека в космическое пространство совсем недавно считались нереальными. И все же полет в космос стал реальностью потому, что ему предшествовал и, по-видимому, сопровождал его полет фантазии.

Прошло всего 50 лет с тех пор, как человек «шагнул в космос», а кажется, что это случилось давным-давно. Стали привычными космические полеты, а ведь каждый полет – это героический поступок.

Время меняет темп жизни, каждая эпоха характеризуется конкретными научными открытиями и их практическим использованием. Современное состояние космонавтики, когда на орбитальных станциях в длительных космических полетах работают космонавты, когда по маршруту Земля – орбитальная станция курсируют пилотируемые и автоматические и грузовые транспортные корабли, содержание работ, которые выполняют космонавты, позволяет говорить об исключительно народно-хозяйственном и научном значении практического освоения космоса

Объективный и тщательный контроль за состоянием земной атмосферы возможен только из космоса. Искусственные спутники связи, космическая метеослужба, космическая геологоразведка и многое другое решают важные государственные вопросы и задачи. Из космоса впервые получены сведения о загрязнении озера Байкал, о величине нефтяных пятен в океане, об интенсивном наступлении пустынь на леса и степи.

Главные имена

Люди издавна мечтали о полетах к звездам, они предлагали сотни разнообразных летательных машин, способных преодолеть земное притяжение и выйти в космос. И лишь в 20 веке мечта землян осуществилась…

И огромный вклад в осуществление этой мечты внесли наши соотечественники.

Николай Иванович Кибальчич (1897-1942), уроженец Черниговской губернии – гениальный изобретатель, приговоренный к смертной казни за изготовление бомб, которыми был убит император Александр II. В ожидании исполнения приговора, в казематах Петропавловской крепости, он создал проект ракеты, управляемой человеком, но о его идеях ученые узнали лишь спустя 37 лет, в 1916 году. Некоторые элементы этого проекта настолько хорошо продуманы, что используются и до сих пор.

Константин Эдуардович Циолковский (1857-1935) не был знаком с Н. И. Кибальчичем, однако их можно считать родными братьями хотя бы потому, что оба они были верными сынами России, и потому, что оба были одержимы и проникнуты идеей освоения космического пространства. Великий труженик русской науки и техники К. Э. Циолковский - создатель теории реактивного движения в межпланетном пространстве. Разработал теорию многоступенчатых ракет, орбитальных спутников Земли, подробно рассмотрел возможность путешествия к иным планетам. Величайшая заслуга Циолковского перед человечеством состоит в том, что он открыл людям глаза на реальные пути осуществления космических полетов. В его работе «Исследование мировых пространств реактивными приборами» (1903 г.) дана стройная теория ракетного движения и доказано, что именно ракета явится средством грядущих межпланетных полетов.

Иван Всеволодович Мещерский (1859-1935) родился на два года позже К. Э. Циолковского. Теоретические исследования по механике тел переменной массы (вывел уравнение, которое до сих пор является исходным для определения тяги ракетного двигателя), сыгравшие столь значительную роль в развитии ракетостроения, поставили его имя в одном почетном ряду имен покорителей космоса.

А вот Фридрих Артурович Цандер (1887-1933)), урожененц Латвии, всю свою жизнь посвятил практической реализации идеи осуществления космических полетов. Он создал школу теории и конструирования реактивных двигателей, воспитал много талантливых последователей этого важного дела. Ф. А. Цандера сжигала страсть к космическим полетам. Он не дожил до дня запуска ракеты с его реактивным двигателем ДР-2, проложившей первую космическую трассу.

Сергей Павлович Королев (1907-1966) – главный конструктор ракет, первых искусственных спутников земли и пилотируемых летательных аппаратов. Его таланту, его энергии мы обязаны тем, что первый космический корабль был создан и успешно запущен именно в нашей стране.

С особой гордостью я называю имя своего земляка, Юрия Васильевича Кондратюка. Космическая биография Новосибирска началась с имени этого ученого-самоучки, который в 1929 г. издал результаты своих расчетов в книге «Завоевания межпланетных пространств». Именно на основе его трудов американские астронавты и советские автоматические станции достигали Луны. Война, оборвавшая его жизнь, не дала осуществиться всем его замыслам.

Неоценимый по значимости вклад в развитие космонавтики в нашей стране внес академик Мстислав Всеволодович Келдыш (1911-1978) . Он возглавил решающий участок работ по изучению и освоению космоса. Выявление новых научных и технических задач, новых горизонтов в исследовании космического пространства, вопросы организации и управления полетом - это далеко не полный круг деятельности М. В. Келдыша.

Юрий Алексеевич Гагарин – первый космонавт Земли. Вся страна восхищалась его подвигом. Он стал героем космоса благодаря своей воле, настойчивости и верности мечте, которая зародилась еще в детстве. Трагическая гибель оборвала его жизнь, но след от этой жизни остался навсегда – и на Земле и в космосе.

К сожалению, не могу назвать всех по именам и подробно рассказать обо всех тех ученых, инженерах, летчиках-испытателях и космонавтах, чей вклад в дело освоения космоса огромен. Но без названных имен космонавтика немыслима.(Приложение1)

Хронология событий

4 октября 1957 г. был запущен первый ИСЗ . Масса «Спутника-1» была 83,6 кг. Восемнадцатый Международный конгресс по астронавтике утвердил этот день началом космической эры . Первый спутник «говорил по-русски». «Нью-Йорк таймс» писала: «Этот конкретный символ будущего освобождения человека из-под власти сил, приковывающих его к Земле, создан и запущен советскими учеными и техническими специалистами. Все на Земле должны быть благодарны им. Это подвиг, которым может гордиться все человечество».

1957 и 1958 г.г . стали годами штурма первой космической скорости, годами искусственных спутников Земли. Появилась новая область науки – спутниковая геодезия.

4 января 1959 г . впервые было «преодолено» земное тяготение. Первая лунная ракета «Мечта» сообщила летательному аппарату «Луна-1» массой 361,3 кг вторую космическую скорость (11,2 км/с, стала первым искусственным спутником Солнца. Были решены сложные технические задачи, получены новые данные о радиационном поле Земли и космического пространства. С этого времени началось исследование Луны.

Одновременно продолжалась упорная и кропотливая подготовка к первому в истории Земли полету человека. 12 апреля 1961 г. в кабину космического корабля «Восток» поднялся тот, кому первому в мире предстояло шагнуть в неизведанную бездну космического пространства, гражданин СССР, летчик Военно-Воздушных Сил Юрий Алексеевич Гагарин. Потом были другие «Востоки». А 12 октября 1964 г. началась эпоха «Восходов», которые по сравнению с «Востоками» имели новые кабины, позволяющие космонавтам впервые осуществлять полеты без скафандров, новое приборное оборудование, улучшенные условия обзора, улучшенные системы мягкой посадки: скорость приземления практически доводилась до нуля.

В марте 1965 г . впервые человек вышел в открытый космос. Алексей Леонов летал в космосе рядом с космическим кораблем «Восход-2» со скоростью 28 000 км/ч.

Потом талантливыми головами и золотыми руками было вызвано к жизни новое поколение космических кораблей - «Союзы». На «Союзах» осуществлялось широкое маневрирование, ручная стыковка, была создана первая в мире экспериментальная космическая станция, впервые осуществлен переход из корабля в корабль. На орбитах начали функционировать и нести свою научную вахту орбитальные научные станции типа «Салют». Стыковку с ними осуществляют космические корабли семейства «Союз», технические возможности которых позволяют изменять высоту орбиты, осуществлять поиск другого корабля, сближаться с ним и причаливать. «Союзы» обрели полную свободу в космосе, так как могут осуществить автономный полет без участия наземного командно-измерительного комплекса.

Следует отметить, что в 1969 г. в исследовании космоса произошло событие, сопоставимое по значимости с первым полетом в космос Ю. А. Гагарина. Американский космический корабль «Аполлон-11» достиг Луны, и двое американских астронавтов 21 июля 1969 г. высадились на ее поверхность.

Спутники типа «Молния» проложили радиомост Земля - космос - Земля. Дальний Восток стал близким, так как радиосигналы по маршруту Москва- спутник - Владивосток пробегают за 0,03 с.

1975 год в истории космических исследований был отмечен выдающимся свершением - совместным полетом в космосе советского корабля «Союз» и корабля США «Аполлон».

С 1975 г . функционирует новый вид космического ретранслятора для цветных телепередач - спутник «Радуга».

2 ноября 1978 г. успешно завершен очень длительный в истории космонавтики (140 сут) пилотируемый полет. Космонавты Владимир Коваленок и Александр Иванченков успешно приземлились в 180 км юго-восточнее г. Джезказгана. За время работы их на борту орбитального комплекса «Салют-6» - «Союз» - «Прогресс» выполнена широкая программа научно-технических и медико-биологических экспериментов, проведены исследования природных ресурсов и изучение природной среды.

Отмечу еще одно выдающееся событие в исследовании космоса. 15 ноября 1988г . орбитальный корабль многоразового использования «Буран», выведенный в космос уникальной ракетной системой «Энергия», выполнил двухвитковый полет по орбите вокруг Земли и приземлился на посадочную полосу космодрома Байконур. Впервые в мире посадка корабля многоразового использования осуществлена в автоматическом режиме

В активе нашей космонавтики годичное пребывание на орбите и плодотворная научно-исследовательская деятельность. Длительная космическая командировка на станцию «Мир» закончилась для Владимира Титова и Мусы Макарова успешно. Они благополучно вернулись на родную Землю.