Водород. Получение водорода

Вам понадобится

  • пластиковая бутылка емкостью 1,5 литра, резиновый шарик, кастрюля с водой, гидроксид калия или гидроксид натрия (каустическая сода, едкий натр), 40 сантиметров проволоки из алюминия, кусочек цинка, стеклянная емкость с узким горлышком, раствор соляной кислоты, резиновый шарик, аккумулятор 12 Вольт, провод из меди, провод из цинка, стеклянный сосуд, вода, поваренная соль, клей, шприц.

Инструкция

Заполните наполовину водой пластиковую бутылку. Киньте в бутылку и растворите в воде 10-15 грамм едкого натра или соды. Поставьте бутылку в кастрюлю с водой. Нарежьте алюминиевую проволоку кусочками по 5 сантиметров длиной и киньте в бутылку. Наденьте на горловину бутылки резиновый шарик. Выделяемый во время реакции с раствором щелочи будет в резиновом шарике. Эта происходит с бурным выделением - будьте осторожны!

Налейте в стеклянную емкость соляной и киньте в нее цинк. Наденьте на горловину стеклянной емкости воздушный шарик. Выделяемый во время реакции с соляной кислотой водород будет собираться в воздушном шаре.

Налейте в стеклянную емкость воду и размешайте в ней 4–5 столовых ложек поваренной соли. Затем просуньте в шприц со стороны поршня медный провод. Герметизируйте это место клеем. Опустите шприц в сосуд с соляным раствором и отодвигая поршень, заполните шприц. Подключите медный провод к отрицательному выводу аккумулятора. Опустите рядом со шприцом в раствор соли цинковый провод и подключите его к положительному выводу аккумулятора. В результате реакции электролиза около медного провода выделяется водород, который вытесняет , контакт медного провода с соляным раствором прервется, и реакция прекратится.

Современное название водороду – гидроген, дал французский знаменитый химик Лавуазье. Название обозначает – гидро (вода) и генез (рождающий). Открыл «горючий воздух», как его раньше называли, Кавендиш в 1766 году, он же и доказал, что водород легче воздуха. В школьной программе по химии присутствуют уроки, в которых рассказывается не только об этом газе, но и способе его получения.

Вам понадобится

  • Колба Вюрца, гидроксид натрия, алюминий в гранулах и пудра, мерный стакан, алюминиевая ложка, штатив,капельная воронка. Защитные очки и перчатки, лучина, зажигалка или спички.

Инструкция

Первый способ.
Возьмите колбу Вюрца, в которой к горловине припаяна стеклянная отводная трубка, и капельную воронку. Соберите систему на штативе, прикрепив колбу зажимом и установив ее на поверхность стола. Сверху в нее вставьте капельную воронку с краником.

Проверьте плотное закрепление всех системы – колбы Вюрца и зажима. Возьмите . Он должен быть в гранулах. Положите его в колбу. Налейте в капельную воронку более-менее насыщенный раствор . Приготовьте две емкости для сдерживания , а также лучину и зажигалку или спички, чтобы ее поджечь.

Влейте из капельной воронки в колбу Вюрца гидроксид натрия, для этого откройте кран на воронке. Подождите, через некоторое начнется выделение водорода. Водород, с небольшим содержанием , заполнит колбу полностью. Чтобы ускорить этот процесс, нагрейте колбу Вюрца снизу при помощи горелки.

Давно хотел сделать подобную штуку. Но дальше опытов с батарейкой и парой электродов не доходило. Хотелось сделать полноценный аппарат для производства водорода, в количествах для того чтобы надуть шарик. Прежде чем делать полноценный аппарат для электролиза воды в домашних условиях, решил все проверить на модели.

Общая схема электролизера выглядит так.

Эта модель не подходит для полноценной ежедневной эксплуатации. Но проверить идею удалось.

Итак для электродов я решил применить графит. Прекрасный источник графита для электродов это токосъемник троллейбуса. Их полно валяется на конечных остановках. Нужно помнить, что один из электродов будет разрушаться.

Пилим и дорабатываем напильником. Интенсивность электролиза зависит от силы тока и площади электродов.

К электродам прикрепляются провода. Провода должны быть тщательно изолированы.

Для корпуса модели электролизера вполне подойдут пластиковые бутылки. В крышке делаются дырки для трубок и проводов.

Все тщательно промазывается герметиком.

Для соединения двух ёмкостей подойдут отрезанные горлышки бутылок.

Их необходимо соединить вместе и оплавить шов.

Гайки делаются из бутылочных крышек.

В двух бутылках в нижней части делаются отверстия. Все соединяется и тщательно заливается герметиком.

В качестве источника напряжения будем использовать бытовую сеть 220в. Хочу предупредить, что это довольно опасная игрушка. Так что, если нет достаточных навыков или есть сомнения, то лучше не повторять. В бытовой сети у нас ток переменный, для электролиза его необходимо выпрямить. Для этого прекрасно подойдет диодный мост. Тот что на фотографии оказался не достаточно мощным и быстро перегорел. Наилучшим вариантом стал китайский диодный мост MB156 в алюминиевом корпусе.

Диодный мост сильно нагревается. Понадобится активное охлаждение. Кулер для компьютерного процессора подойдет как нельзя лучше. Для корпуса можно использовать подходящую по размеру распаячную коробку. Продается в электротоварах.

Под диодный мост необходимо подложить несколько слоев картона.

В крышке распаячной коробки делаются необходимые отверстия.

Так выглядит установка в сборе. Электролизер запитывается от сети, вентилятор от универсального источника питания. В качестве электролита применяется раствор пищевой соды. Тут нужно помнить, что чем выше концентрация раствора, тем выше скорость реакции. Но при этом выше и нагрев. Причем свой вклад в нагрев будет вносить реакция разложения натрия у катода. Эта реакция экзотермическая. В результате неё будет образовываться водород и гидроксид натрия.

Тот аппарат, что на фото выше, очень сильно нагревался. Его приходилось периодически отключать и ждать пока остынет. Проблему с нагревом удалось частично решить путем охлаждения электролита. Для этого я использовал помпу для настольного фонтана. Длинная трубка проходит из одной бутылки в другую через помпу и ведро с холодной водой.

Водородная энергетика возникла как одна из линий развития НТП в 70-х годах предыдущего столетия. По мере расширения области исследований, касающихся получения, перевозки и хранения, а также использования водорода, становились очевиднее экологические преимущества технологий получения водорода в разных сферах народного хозяйства. Эффективность развития некоторых водородных технологий (топливные элементы, металлогидридные системы, транспортные водородные системы и т.д.) показали, что применение водорода дает совершенно новые качественные показатели в функционировании агрегатов и систем.

Проведенные технико-экономические тестирования показали, что, несмотря на то, что элемент водород – вторичный носитель энергии, то есть он дороже по стоимости, чем природные топлива, его использование в некоторых случаях экономики уже сегодня целесообразно. Поэтому работы в отрасли водородной энергетики в большинстве странах, тем более с развитой промышленностью, считаются приоритетными направлениями развития техники и науки. Они все больше поддерживаются финансами со стороны государства и частного капитала.

Свойства водорода

При нормальных условиях в свободном состоянии водород представлен бесцветным газом, не имеющим и запаха. Водород имеет плотность относительно воздуха 1/14. Обычно он встречается в комбинации с остальными элементами, например, углерода в метане, кислорода в воде, в разных органических соединениях. Поскольку водород чрезвычайно активен химически, он редко находится в несвязанном виде.

Водород, охлажденный до состояния жидкости, занимает 1/700 объема состояния в газообразном виде. При его соединении с кислородом, водород имеет максимально большое содержание энергии на одну единицу массы: 120,7 ГДж/т. Это является одной из нескольких причин, почему водород в жидком виде применяется в качестве ракетного топлива и служит энергетикой для современных космических кораблей, для которой большое удельное содержание энергии водорода и малая молекулярная масса имеет большое значение. В чистом кислороде при сжигании единственные продукты – это вода и тепло высокой температуры. Так, в случае применения водорода не выделяются вредные парниковые газы и даже не происходит нарушение в природе круговорота воды.

Производство водорода

Ресурсы водорода, которые содержатся в воде и в органическом веществе, почти неисчерпаемы. Разрыв данных связей дает возможность для получения водорода, после чего водород применяется для топлива. Разработано множество процессов по разделению воды на составные части.

Вода при нагревании более 2500°С начинает разлагаться на кислород и водород (прямой термолиз). Такую высокую температуру получают, например, при помощи концентраторов энергии солнца. Здесь проблема состоит в том, чтобы не допустить рекомбинацию кислорода и водорода.

Сегодня в мире основная часть получаемого водорода в промышленном масштабе получается в ходе паровой конверсии метана (ПКМ). Таким образом, получение водорода дает возможность применять его как реагент для процесса очистки нефти и в качестве составляющей азотных удобрений и для ракетной техники. Тепловая энергия и пар при температурах 750-800°С необходимы для выделения водорода из углеродной основы в метане, что и случается на каталитических поверхностях в химических реформерах. Самая первая ступень ПКМ процесса разделяет водяной пар и метан на моно оксид углерода, а также водород. На второй ступени в процессе «реакции сдвига» моно оксид углерода и вода преобразуются в водород и диоксид углерода. Данная реакция протекает при 200-250°С.

В СССР в 30-е годы в промышленных масштабах получали синтез-газ благодаря паровоздушной газификации угля. Сегодня в ИПХФ РАН, расположенном в Черноголовке, создается технология для газификации угля в сверхадиабатическом режиме. Данная технология дает возможность преобразовывать энергию тепла угля в тоже тепловую энергию синтез-газа с КПД 98%.

Начиная с 70-х годов предыдущего века, в нашей стране были сделаны и получили научно-техническое объяснение и подтверждение путем эксперимента проекты гелиевых высокотемпературных реакторов (ВТГР) энерготехнологических атомных станций (АЭТС) для черной металлургии и химической промышленности: АБТУ-50, а затем – проект атомной энергетической станции с реактором ВГ-400, мощность которой 1060 МВт для химико-ядерного комплекса по получению водорода и смесей, содержащих его, по выпуску метанола и аммиака, еще несколько проектов в данном направлении.

Базой для всех проектов ВТГР стали разработки ядерных двигателей для ракет на базе водорода. Испытательные высокотемпературные реакторы, выпущенные в нашей стране для данных целей, а также ядерные демонстрационные двигатели для ракет показали работоспособность при нагревании водорода до максимальной температуры 3000К.

Высокотемпературные реакторы на основе гелиевого теплоносителя – новейший тип универсальных экологически чистых атомных энергетических источников, уникальные характеристики которых – способность получать тепло при температурах выше 1000°С и высочайший уровень безопасности – определяют невероятные возможности их применения для получения в газотурбинном цикле электрической энергии с большим КПД и для обеспечения высокотемпературным теплом и электроэнергией производственных процессов получения водорода, технологических процессов нефтеперерабатывающей, химической, металлургической и других отраслей, для процессов опреснения воды.

Самым современным в этой области считается международный проект ГТ-МГР, разрабатывающийся общими стараниями отечественных институтов и компании GA из США. Также с проектом сотрудничают компании Фуджи электрик и Фраматом.

Получение атомного водорода

Источником атомного водорода являются вещества, которые отщепляют атомы водорода при их облучении. В процессе облучения ультрафиолетом, например, йодистого водорода начинает протекать реакция с выделением атомного водорода.

Для выделения атомного водорода используется термическая диссоциация молекулярного водорода на палладиевой, платиновой проволоке или проволоке из вольфрама, нагретой при давлении меньше 1,33 Па в атмосфере водорода. Разделения водорода на атомы удается достигнуть также, применяя радиоактивные вещества. Есть метод синтеза атомного водорода в электрическом высокочастотном разряде с дальнейшим вымораживанием молекулярного водорода.

Физические варианты способов получения водорода из смесей, содержащих его

Водород в значимых количества имеется во многих смесях газов, в коксовом газе, например, который выделяется при пиролизе бутадиена, в получении дивинила.

Чтобы выделить водород из смесей газов, содержащих водород, применяют физические методы концентрирования и выделения водорода.

Фракционирование и низкотемпературная конденсация. Данный процесс описывается высокой степенью получения водорода из газовой смеси и выгодными экономическими показателями. Как правило, при давлении газа 4 МПа для выделения 93-94%-ного водорода температура должна составлять 115К. При содержании в исходном газе водорода больше 40% степень его получения может достигать 95%. Затрата энергии на концентрирование Н2 70-90% приравнивается к 22 кВт.ч на 1000 м3 получаемого водорода.

Адсорбционное выделение. Данный процесс происходит с помощью использования молекулярных сит, адсорберов, работающих циклически. Его можно реализовывать под давлением, равным 3-3,5 МПа с извлечением до 80-85% Н2 в виде 90%-го концентрата. В сравнении с низкотемпературным способом получения водорода для осуществления данного процесса нужно приблизительно на 25-30% меньше материальных затрат и на 30-40% меньше эксплуатационных.

Адсорбционное производство водорода с использованием жидких растворителей. В некоторых случаях способ подходит для получения водорода в чистом виде. Данный метод позволяет извлекать до 80-90% водорода, который содержится в первоначальной смеси газов, а также достигать его концентрации в конечном продукте до 99,9%. Затраты энергии на получение водорода достигают 68 кВт.ч на 1000 м3 Н2.

Получение водорода путем электролиза воды

Электролиз воды – это один из распространенных и хорошо изученных способов получения водорода. Он гарантирует получение продукта в чистом виде (99,6-99,9% Н2) за одну технологическую ступень. На получение водорода в затратах на производство стоимость электроэнергии составляет около 855.

Данный способ применяется в нескольких странах, которые имеют значительные запасы недорогой гидроэнергии. Крупнейшие электрохимические комплексы располагаются в Индии, Канаде, Норвегии, Египте, но созданы и функционируют множество мелких установок в разных странах мира. Этот способ считается важным еще и потому, что он наиболее универсален относительно применения первичных энергетических источников. В связи с распространением атомной энергетики стал возможен новый расцвет процессов электролиза воды за счет недорогой электрической энергии атомных электростанций. Ресурсы электроэнергетики сегодня недостаточны для синтеза водорода как продукта для дальнейшего использования в энергетике.

Электрохимический метод получения водорода из воды имеет следующие преимущества:

1. Высокая чистота водорода в конечном продукте – до 99,99% и более;

2. Легкость и постоянство технологического процесса, можно автоматизировать процесс, в электролитической ячейке нет движущихся частей;

3. Возможность получения очень ценных дополнительных продуктов – кислорода и тяжелой воды;

4. Неисчерпаемое и доступное исходное сырье – вода;

5. Возможность получения водорода прямо под давлением;

6. Физическое распределение кислорода и водорода в ходе электролиза.

Во всех приведенных примерах получения водорода путем разложения воды побочным продуктом являются большие объемы кислорода. Это открывает новые возможности для его использования. Он сможет найти свое место не только в качестве ускорителя процессов технологии, но и в качестве незаменимого очистителя водоемов. Данная область применения кислорода может распространиться и на почву, атмосферу и воду. Сгорание в кислороде увеличивающихся количеств бытовых отходов поможет решить вопрос твердых отбросов крупных городов.

Еще один ценный продукт электролиза воды – тяжелая вода – прекрасный замедлитель нейтронов во всех атомных реакторах. Данная тяжелая вода может применяться в качестве сырья для синтеза дейтерия, который служит материалом для термоядерной энергетики.

В качестве перспективного горючего водород начал рассматриваться уже в середине прошлого века, а до этого он успел поработать в дирижаблях и сварочных аппаратах, ныне же часто трудится в роли одного из самых эффективных аккумуляторов энергии. Внедрение водорода в качестве горючего долго тормозилось его взрывоопасностью, а самое главное, себестоимостью его добычи. Но скоро ситуация может резко измениться
Впервые водород в чистом виде выделил 240 лет назад английский химик Генри Кавендиш. Свойства полученного им газа были настолько удивительны, что ученый принял его за легендарный «флогистон», «теплород» — вещество, по канонам науки того времени определявшее температуру тел. Он прекрасно горел (а огонь считался почти чистым флогистоном), был необычайно легок, в 15 раз легче воздуха, хорошо впитывался металлами и так далее. Однако другой великий химик, француз Антуан-Лоран Лавуазье, уже в 1787 году доказал, что полученное Кавендишем вещество — вполне обычный, хотя и очень интересный химический элемент. Свое название водород получил оттого, что при горении давал не дым, сажу и копоть, а воду. Кстати, именно эта его особенность больше всего привлекает сегодняшних экологов и «зеленых».
Вплоть до конца XIX века получение водорода было делом достаточно хлопотным. Добывали его в мизерных количествах, растворяя обычные металлы в кислотах, а также щелочные и щелочноземельные в воде. Только после того, как электричество начали производить в промышленных масштабах, появилась возможность относительно легко добывать его тоннами с помощью электролиза. Выглядит электролитический процесс примерно так: в ванну с водой опускают два электрода, на одном — положительный потенциал, на другом — отрицательный. На плюсе в результате прохождения тока выделяется кислород, а на минусе — водород.
Наработав в достаточном количестве этот легкий газ, люди сначала приспособили его для воздушных полетов. В этом качестве первый элемент Таблицы Менделеева применяли вплоть до 1937 года, когда в воздухе сгорел крупнейший в мире, в два футбольных поля размером, заполненный водородом немецкий дирижабль «Гинденбург». Катастрофа унесла жизни 36 человек, и на таком использовании водорода был поставлен крест. С тех пор аэростаты заправляют исключительно гелием. Гелий — газ, увы, более плотный, но зато негорючий.

Погремушка
В 1944 году американские военные попытались использовать его в качестве ракетного топлива. Помешала делу высокая взрывоопасность газа: стоило совсем немного отклониться от нормальной работы двигателей или допустить малейшую протечку, и мирный водород мигом превращался в зловещий «гремучий газ». В результате ракеты не долетали до цели, взрываясь прямо на старте. По той же причине американцам не удалось в 50-е годы прошлого века построить водородный самолет, а в 70-е, во времена нефтяного кризиса, — водородный эсминец.


В этом смысле дела в СССР, основном тогдашнем конкуренте Штатов в области водородной энергетики, были более успешны. Советские ученые решили добывать из водорода энергию в виде электричества, напрямую окисляя его в водной среде, а не поджигая в смеси с кислородом. Для этого они использовали топливные элементы, в которых водород на специальной ионообменной мембране соединялся с кислородом, в результате чего получались вода и электричество. Технология оказалась настолько удобной, что сейчас без участия топливных элементов не проходит ни одна серьезная космическая экспедиция.

Движки-универсалы
Немного позже ученые все же придумали, как использовать водород в качестве именно горючего и при этом не взорваться. В газ стали добавлять специальные присадки-ингибиторы (химические «тормоза»). Например, пропилен. Всего один процент этого дешевого газа — и водород из грозного оружия превращается в безопасный газ. В результате уже в 1979 году компания BMW выпустила первый автомобиль, вполне успешно ездивший на водороде, при этом не взрывавшийся и выпускавший из выхлопной трубы водяной пар. В эпоху усиливающейся борьбы с вредными выхлопами машина была воспринята как вызов консервативному автомобильному рынку. Вслед за BMW в экологическую сторону потянулись и другие производители. К концу века каждая уважающая себя автокомпания имела в запаснике хотя бы один концепт-кар, работающий на водородном топливе.
Баварские автомобилестроители в рамках программы CleanEnergy («чистая энергия») приспособили под езду на Н2 несколько «семерок» и MINI Cooper. Оборудованная 4-литровым двигателем водородная «семерка» развивает мощность в 184 лошадиные силы и проходит на одной заправке (170 литтров жидкого водорода «под завязку») 300 км. Mazda «подсадила» на водород свой знаменитый спорт-кар RX-8. В таком экологически чистом варианте он называется Mazda RX-8 HRE (Hydrogen Rotary Engine). Все эти машины могут ездить и на водороде, и на бензине.


Если BMW и Mazda пока чередуют два вида топлива, некоторые научились их совмещать. По дорогам США уже ездит множество седельных тягачей, в дизельных сердцах которых пылает соляро-водородная смесь. В результате мощность двигателя вместе с чистотой выхлопа растут, а расход топлива снижается на 10%. Оборудованную системой HFI (Hydrogen Fuel Injection — водородный топливный впрыск) машину не надо даже заправлять этим газом, достаточно залить в небольшой бачок несколько литров воды. Система сама проведет электролиз, соберет водород и направит его в камеру сгорания. Эффект заключается в том, что в смеси с водородом солярка сгорает значительно эффективнее.
Но большинство производителей пошли по пути создания электромобилей на топливных элементах. Ибо кроме «экологичности» у них есть масса других преимуществ. Например, гораздо более высокий (до нескольких раз) КПД двигателя или бесшумность.
А больше всех новым топливом заинтересовались японцы. И это понятно. Эта страна, практически лишенная хоть каких-нибудь природных запасов нефти и газа, обладает неограниченными объемами сырья для водорода (в виде океанской воды) и поистине завидной сообразительностью населения. А поэтому здесь водородные аналоги есть практически у любого вида техники — от работающего на топливных элементах локомотива до человекоподобного робота SpeecysFC. К тому же японцы вовсю ведут разработки топливных элементов для ноутбуков и мобильных телефонов. Компания NEC еще в 2001 году создала первый рабочий прототип мобильного топливного элемента PEFC. «Батарейка» выдает «на-гора» в 10 раз больше энергии, чем стандартный литиево-ионный аккумулятор. Правда, заряжается она метанолом: в специальной камере под действием катализаторов и температуры (85 градусов по Цельсию) из него извлекается водород, который и «допускается» к энергопроизводящей мембране. Такая система работы связана с тем, что хранить водород не так-то просто.

Энергетические консервы
Пока человек не научился получать дешевый водород напрямую, без использования электричества, к этому газу можно относиться лишь как к аккумулятору энергии — этакой копилке мегаджоулей. Ведь всего двадцать грамм водорода способны совершить столько же работы, сколько полностью заряженный автомобильный аккумулятор. Однако и в этом качестве у него существует множество конкурентов. Всю свою историю человек разрабатывал новые способы сбора и хранения энергии. С самым простым видом такого накопителя мы сталкиваемся всякий раз, когда заводим механические часы. Главное достоинство металлической пружины — простота конструкции, однако по плотности накопленного она стоит в самом конце рейтинга энергетических аккумуляторов. Самая лучшая пружина не может «сохранить» более 0,5 кДж на килограмм своего веса. Обычная резинка способна «собрать» в 8 раз больше. Еще более емкими являются детали, которые электрики часто так и называют «емкость». Правильное название — конденсатор. Тут уже можно с килограмма получить 12 кДж. Следом за конденсаторами в линейке накопителей идут газовые и гидрогазовые. Их конструкция довольно сложна, используют эти устройства довольно редко (исключение — гидравлические дверные доводчики). Зато электрические «пиробатарейки» с неводным электролитом (энергоемкость — до 70 кДж/кг) человек использует сплошь и рядом. При большой температуре емкость и энергоотдачу такого источника можно повысить на порядок. Промышленный «горячий электрический аккумулятор» «запасает» от 400 до 700 кДж на килограмм. Однако высокая, до 800 градусов, рабочая температура и выделение ядовитого хлора делают его малопригодным для гражданского использования. Зато огромный срок хранения в холодном состоянии и быстрый выход на рабочий режим очень нравятся военным, которые такие батареи активно используют в составе стоящих на боевом дежурстве ракет и прочей техники быстрого реагирования. Настоящим «королем накопителей» следует признать обычный маховик. Юлу, которую мы знаем с детства. Тут уже речь идет о цифрах в тысячи и десятки тысяч килоджоулей. Хороший промышленный накопитель из углепластика способен «запасать» таких килоджоулей до 15 000. И это не предел. На самом деле энергоемкость такого маховика определяется только прочностью конструкции. Незадолго до начала Великой Отечественной войны на одном из наших оборонных заводов разорвало установленный в подвале маховик. Осколок маховика весом примерно 300 кг, пробив все потолочные бетонные перекрытия, улетел в небо, а упав обратно, во второй раз, пробил крышу — такая огромная энергия была в нем накоплена.

Камеры хранения


Так выглядит 3d орбиталь в атоме водорода. Согласно квантовой механике у электрона нет четкой траектории движения, и орбиталь — это та область пространства, где его пребывание наиболее вероятно
Сейчас водородное топливо сберегают тремя способами: в сжатом виде, в сжиженном и в металлогидридах. Самое простое, конечно, — закачать водород в бак мощным компрессором. В баках той же Mazda водородное топливо содержится под давлением 350 атмосфер. Но способ этот, будучи самым дешевым, и самый небезопасный. При таком высоком давлении любая слабинка в системе грозит протечкой газа. А где протечка, там пожар, а то и взрыв.
Более надежный и практичный способ — держать водород в жидком виде. Но для этого его нужно охладить до -253 градусов Цельсия. В BMW топливо хранится именно в таком виде: поэтому почти половину топливной системы занимает мощнейшая теплоизоляция. И все равно, стоит оставить машину на стоянке, скажем, на недельку, и она встретит вернувшегося хозяина с пустыми баками. Никакая изоляция не может полностью защитить систему от нагрева. В результате водород начинает испаряться, давление в баке растет, и газ просто стравливается в атмосферу через предохранительный клапан. По техническим условиям полная заправка испаряется всего за три дня…
Самый перспективный способ — хранение в металлогидридных композициях. Водород, оказывается, очень хорошо растворяется металлами, как вода впитывается губкой. Причем он поглощается в огромных объемах, значительно превосходящих объемы «губки». Такие «напитанные» водородом металлы называются металлогидридами. При охлаждении они вбирают водород, при нагревании — активно его отдают. В прошлом году специалисты из американской Тихоокеанской северо-западной национальной лаборатории создали материал на основе борана аммиака, способный впитывать и отдавать уже при 80 градусах водород со скоростью, в сто раз превышающей те, что были доступны раньше. А Танер Иилдирим из американского Национального института стандартов и технологий вместе с Салимом Сайраки из турецкого университета Билкента разработали материал, способный впитывать газообразный водород в количестве до 9 000 литров на 10-килограммовый элемент! Это особый кристаллический нанокомплекс, состоящий из микроскопических, инкрустированных снаружи титаном, углеродных нанотрубок, каждая из которых в 5 000 раз тоньше человеческого волоса. Изготовить такой углеродно-титановый «накопитель» человек уже может, но стоит он слишком дорого. Пока. Однако заметим, что и персональный компьютер еще совсем не так давно стоил, как хороший автомобиль.
Казалось бы, человечество уже готово перепрыгнуть в водородную эпоху. Новое топливо устраивает и ученых, и экологов, и предпринимателей, и политиков, и простых людей. И перейти на него мешает всего одна проблема. Пока что совсем не понятно, где этот водород брать.

Как стать новым кувейтом
Получение водорода электролизом — малоперспективно. Ведь для того чтобы разложить воду на составляющие, нужно электричество, а его производят… правильно, сжигая в основном ту же нефть. Запасы природного газа, из которого можно выделять водород температурным разложением, тоже не бесконечны.
Экологи предлагают для производства водорода использовать только чистую энергию ветра и солнца, однако все эти прожекты не слишком реалистичны. Английские специалисты посчитали, что для того, чтобы перевести весь автотранспорт острова на такой «чистый» Н2, надо будет застроить несколькими рядами ветряков всю береговую полосу страны. С солнечной энергией тоже не совсем получается: фотоэлементы очень дороги, а при их производстве вредных отходов получается столько, что уж лучше нефть жечь. Строго говоря, самые популярные сейчас полупроводниковые солнечные батареи дороги прежде всего потому, что для выплавки, очистки и обработки кремния, из которого их делают, нужно больше энергии, чем они способны выработать в течение всего своего срока службы. Остается «мирный атом», но для того, чтобы произвести из воды необходимое английским автолюбителям количество водорода, на острове нужно построить более 100 новых АЭС — не самое привлекательное решение, если оценить размер необходимых инвестиций и проблему с утилизацией или захоронением отходов.
Ученые и изобретатели пытаются обойти проблему, выводя специальные породы бактерий, вырабатывающих водород, и покрывая крыши гаражей особыми солнечными элементами, в которых вода разлагается на водород и кислород без промежуточной электрической стадии. Химики из британского Университета Лидса предлагают даже извлекать водород из подсолнечного масла. Но очевидно, что все это — лишь временные решения.
Выходит, мы в тупике? Не совсем. Вообще, водород во Вселенной — самый распространенный элемент. Она состоит из него на 70%. А вот на Земле, как ни странно, этот элемент в свободном виде в дефиците: всего 3—4%. А может, его все-таки больше? Вот тут-то мы и подходим к самому интересному.
Еще в 70-х годах прошлого века известный геолог Владимир Ларин разработал теорию, поддержанную многими учеными и никем пока не опровергнутую, которая утверждает, что водорода у нас много больше. Не просто больше, его у нас — целый океан, до которого надо только добраться. И сделать это не так сложно. Достаточно пробурить несколько пяти-шестикилометровых скважин в нужных местах. За разработку этой концепции Ларин получил докторскую степень.
Суть теории заключается в том, что ядро нашей планеты состоит не из железа, как считалось ранее, а из металлогидридов. Из предельно насыщенных водородом магния и кремния и уж только потом — из железа. Собственно, никаких доказательств того, что ядро Земли железное, нет. Ученые еще в начале прошлого века выяснили, что оно состоит из некоего плотного металла, и посчитали, что этим металлом является железо. Зато доказательств металлогидридной теории — масса. Вулканы и земные разломы выбрасывают в атмосферу водород именно так, как требует металлогидридная теория и вопреки тому, что постулирует железная. На основе своей теории Ларин верно предсказал появление в базальтовых породах самородных металлов. Ею легко объясняются загадочные скачки плотности земной мантии на глубинах в 400, 670 и 1 050 км.
Но самое главное в этой теории вот что. На суше есть несколько точно установленных мест, в которых земная кора имеет толщину всего 5—10 км (обычно же — 100—150). Это так называемые области рифтогенеза. По теории Ларина, пробурив в этих местах несколько скважин, можно добраться до металлогидридного слоя. И тогда, закачивая в одну из скважин воду, из других можно будет получать чистый водород в практически неограниченных количествах. Причем нужный газ будет не только отдаваться металлогидридами, но и получаться благодаря соединению щелочноземельного магния с водой. Расчеты, сделанные учеными Сибирского отделения АН СССР в 1989 году, показали, что в случае правильности металлогидридной теории участок в 20 км2 даст за год водорода столько, что им можно будет заменить 400 млн. тонн нефти. А это, между прочим, больше, чем сейчас добывает вся Россия.
В том же 1989 году в Геологическом институте состоялось совещание под патронатом Академии наук, где заслушали доклад Ларина и постановили: «Рекомендовать сверхглубокое бурение (до 10—12 км) в области современного рифтогенеза… Предложить в качестве объекта Тункинскую впадину, где бурение может иметь исключительно большое значение для энергетики и экологии, так как позволит оценить и проверить научно обоснованную возможность обнаружения принципиально нового и экологически чистого энергоресурса, могущего составить конкуренцию традиционным энергетическим источникам…» Тункинская впадина — место недалеко от Байкала, где толщина земной коры составляет всего 4—5 км. На Земле подобных мест немного. Кроме этой впадины подходящие для бурения зоны есть в Исландии, Израиле (на зависть арабским нефтешейхам), на западе Канады и в США, в штате Невада.
Жаль, но тогда, в конце 80-х и начале 90-х, до «водородного» бурения дело не дошло. Стране стало не до экспериментальных скважин. Сегодня, когда нефть является «нашим всем», никто добывать водород особо не стремится, предлагая, как в том старом анекдоте, изобретателю бесплатного нефтезаменителя в награду за открытие на выбор либо расстрел, либо четвертование. Единственный из российских олигархов, вкладывающий серьезные деньги в развитие водородной энергетики, — абсолютно не нефтяной никелевый король Владимир Потанин. В апреле этого года он купил за 241 млн. долл. 35% акций убыточной американской компании Plug Power, занимающейся выпуском топливных элементов. Аналитики говорят, что это самые большие частные инвестиции из тех, что знает история водородной энергетики. А в 2003 году партнер олигарха Михаил Прохоров на совместном заседании президиума АН России и правления «Норильского никеля» заявил, что «если страна уже сегодня не предпримет попытки дерзкого прорыва в «водородную эру», то через пятнадцать лет она окажется в тяжелейшей депрессии, ибо ее нефть окажется ненужной миру».
Не исключено, что он был прав. Человеку свойственно быстро расставаться с менее удобными вещами в пользу более удобных. Вспомните, сколько лет ему понадобилось на то, чтобы сменить виниловые пластинки на компакт-диски. А сколько ушло на то, чтобы опутать мир сетью Интернет? А за какой срок нашу цивилизацию покорили мобильные телефоны? Что бы там ни говорили скептики, но если человечество получит дешевый водород в достаточных количествах, то переход на него произойдет не более чем за десятилетие. Это — всего лишь среднее время «жизни» обычного автомобиля.
Для нас главное — успеть пробурить к тому времени Тункинскую скважину.

Развитие водородной энергетики связано с универсальностью применения этого элемента в качестве энергоносителя, неограниченностью его запасов, экологичностью технологий и увеличением показателей качества работы энергетических систем. Главной задачей сейчас является повышение экономичности добыча водорода: пока оно дороже, чем применение природного газа в энергетике.

Способы получения водорода

Водород – газообразный элемент без цвета и запаха с плотностью 1/14 по отношению к воздуху. В свободном состоянии он встречается редко. Обычно водород соединен с другими химическими элементами: кислородом, углеродом.

Получение водорода для промышленных нужд и энергетики проводится несколькими методами. Самыми популярными считаются:

  • электролиз воды;
  • метод концентрирования;
  • низкотемпературная конденсация;
  • адсорбция.



Выделить водород можно не только из газовых или водных соединений. Добыча водорода производится при воздействии на дерево и уголь высокими температурами, а также при переработке биоотходов.

Атомный водород для энергетики получают, используя методику термической диссоциации молекулярного вещества на проволоке из платины, вольфрама либо палладия. Ее нагревают в водородной среде под давлением менее 1,33 Па. А также для получения водорода используются радиоактивные элементы.

Электролизный метод

Наиболее простым и популярным методом выделения водорода считается электролиз воды. Он допускает получение практически чистого водорода. Другими преимуществами этого способа считаются:

  • доступность сырья;
  • получение элемента под давлением;
  • возможность автоматизации процесса из-за отсутствия движущихся частей.

Процедура расщепления жидкости электролизом обратен горению водорода. Его суть в том, что под воздействием постоянного тока на электродах, опущенных в водный раствор электролита, выделяются кислород и водород.

Дополнительным преимуществом считается получение побочных продуктов, обладающих промышленной ценностью. Так, кислород в большом объеме необходим для катализации технологических процессов в энергетике, очистки почвы и водоемов, утилизации бытовых отходов. Тяжелая вода, получаемая при электролизе, в энергетике используется в атомных реакторах.

Получение водорода концентрированием

Этот способ основан на выделении элемента из содержащих его газовых смесей. Так, наибольшая часть производимого в промышленных объемах вещества, извлекается с помощью паровой конверсии метана. Добытый в этом процессе, водород используют в энергетике, в нефтеочистительной, ракетостроительной индустрии, а также для производства азотных удобрений. Процесс получения H2 осуществляют разными способами:

  • короткоцикловым;
  • криогенным;
  • мембранным.

Последний способ считается наиболее эффективным и менее затратным.

Эта методика получения H2 заключается в сильном охлаждении газовых соединений под давлением. В результате они трансформируются в двухфазную систему, которая впоследствии разделяется сепаратором на жидкое составляющее и газ. Для охлаждения применяют жидкие среды:

  • воду;
  • сжиженный этан или пропан;
  • жидкий аммиак.

Эта процедура не так проста, как кажется. Чисто разделить углеводородные газы за один раз не получится. Часть компонентов уйдет с газом, забираемым из сепарационного отсека, что не экономично. Решить проблему можно глубоким охлаждением сырья перед сепарацией. Но это требует больших энергозатрат.

В современных системах низкотемпературных конденсаторов дополнительно предусмотрены колонны деметанизации либо деэтанизации. Газовую фазу выводят с последней сепарационной ступени, а жидкость направляется в ректификационную колонну с потоком сырого газа после теплообмена.

Способ адсорбции

Во время адсорбции для выделения водорода используют адсорбенты – твердые вещества, поглощающие необходимые компоненты газовой смеси. В качестве адсорбентов применяют активированный уголь, силикатный гель, цеолиты. Для осуществления этого процесса применяют специальные аппараты – циклические адсорберы или молекулярные сита. При реализации под давлением этот метод позволяет извлекать 85-процентный водород.

Если сравнивать адсорбцию с низкотемпературной конденсацией, можно отметить меньшую материальную и эксплуатационную затратность процесса – в среднем, на 30 процентов. Методом адсорбции производят водород для энергетики и с применением растворителей. Такой способ допускает извлечение 90 процентов H2 из газовой смеси и получение конечного продукта с концентрацией водорода до 99,9%.

Добыча водорода в условиях домашнего хозяйства

Высокотемпературные методы производства водорода в домашних условиях неприменимы. Здесь чаще всего используют электролиз воды.

Выбор электролизера

Для получения элемента дома необходим специальный аппарат – электролизер. Вариантов такого оборудования на рынке много, аппараты предлагают как известные технологические корпорации, так и мелкие производители. Брендовые агрегаты дороже, но качество их сборки выше.

Домашний прибор отличается малыми габаритами и легкостью в эксплуатации. Основными деталями его являются:

  • риформер;
  • система очистки;
  • топливные элементы;
  • компрессорное оборудование;
  • емкость для хранения водорода.

В качестве сырья берется простая вода из-под крана, а электричество идет из обычной розетки. Сэкономить на электроэнергии позволяют агрегаты на солнечных батареях.

«Домашний» водород применяют в системах отопления или приготовления пищи. А также им обогащают бензовоздушную смесь, чтобы повысить мощность двигателей автомобиля.

Изготовление аппарата своими руками

Еще дешевле сделать прибор самому в домашних условиях. Сухой электролизер выглядит как герметичный контейнер, который представляет собой две электродные пластины в емкости с электролитическим раствором. Во Всемирной сети предлагаются разнообразные схемы сборки аппаратов разных моделей:

  • с двумя фильтрами;
  • с верхним либо нижним расположением контейнера;
  • с двумя или тремя клапанами;
  • с оцинкованной платой;
  • на электродах.

Простой прибор для получения водорода создать несложно. Для него потребуются:

  • листовая нержавеющая сталь;
  • прозрачная трубка;
  • штуцеры;
  • пластиковая емкость (1,5 л);
  • водяной фильтр и обратный клапан.

Устройство простого прибора для получения водорода

Помимо этого, нужны будут различные метизы: гайки, шайбы, болты. Первым делом нужно распилить лист на 16 квадратных отсеков, у каждого из них спилить угол. В противоположном от него углу требуется высверлить отверстие для болтового крепления пластин. Для обеспечения постоянного тока пластины нужно подключать по схеме: плюс–минус–плюс–минус. Изолируют эти детали друг от друга с помощью трубки, а на соединении болтом и шайбами (по три штуки между пластинками). На плюс и минус насаживают по 8 пластин.

При правильной сборке ребра пластинок не будут задевать электроды. Собранные детали опускают в емкость из пластика. В месте касания стенок болтами делают два установочных отверстия. Устанавливают защитный клапан для удаления избытка газа. В крышку контейнера монтируют штуцеры и герметизируют швы силиконом.

Тестирование аппарата

Чтобы протестировать аппарат, выполняют несколько действий:

  1. Наполняют жидкостью.
  2. Прикрыв крышкой, соединяют один конец трубки со штуцером.
  3. Второй опускают в воду.
  4. Подключают к источнику питания.

После включения прибора в розетку через несколько секунд будет заметен процесс электролиза и выпадение осадка.

Чистая вода не обладает хорошей электропроводностью. Для улучшения этого показателя нужно создать электролитический раствор, добавив щелочь – гидроксид натрия. Он есть в составах для очищения труб наподобие «Крота».

Правила техники безопасности

Получение водорода в домашних условиях возможно лишь при ответственном подходе к работе. Этот газ способен легко загореться или взорваться, особенно при использовании аппаратов, собранных своими руками.

Чтобы избежать утечек, перед процедурой электролиза следует проверить герметичность всех частей электролизера:

  • трубки;
  • насос;
  • резервуар.

Небезопасными могут быть и покупные аппараты, особенно неизвестных производителей. Брак может случиться и у самых известных брендов, но риск этого намного меньше – там продукцию тщательно проверяют.

В промышленности добыча водорода необходима для энергетики, например, на нем работают такие энергоисточники, как высокотемпературные реакторы с гелиевым теплоносителем. Применяют элемент и в производстве пластиков, синтетических волокон, извести и цемента, листового стекла. В домашних условиях его используют для отопления помещений и снижения расходов автомобильного топлива.