Что такое гистерезис, какие польза и вред от данного явления. Определение понятия гистерезиса: особенности, применения в котлах

Кривая намагничивания и петля гистерезиса

Для характеристики явления намагничивания вещества вводится величина Iназываемая намагниченностью вещества. Намагниченность в СИ определяется формулой

Для ферромагнитных тел намагниченность Iявляется сложной нелинейной функцией B 0 . Зависимость I от величины Во/µ 0 называется кривой на­магниченности (рис.2). Кривая указывает на явление магнитного насыщения: начиная с некоторого значения Во/µ 0 = В 0н /µ 0 , намагниченность практически остается постоянной, равной Iн(намагниченность насыщения).

Магнитным гистерезисом (От греческого «hysteresis» - отставание следствия от его причины) ферромагнетика называется отставание измене­ния величины намагниченности ферромагнитного вещества от изменения внешнего магнитного поля, в котором находится вещество. Важнейшей причиной магнитного гистерезиса является характерная для ферромагнетика зависимость его магнитных характеристик (µ, I) не только от состояния вещества в данный момент, но и от значений величин µ и I в предыдущие моменты времени. Таким образом, суще­ствует зависимость магнитных свойств от предшествующей намагниченности вещества.

Петлей гистерезиса называется кривая зависимости изменения величины намагниченности ферромагнитного тела, помещенного во внешнее магнитное поле, от изменения индукции этого поля от + Во/µ 0 до - Во/µ 0 и обратно. Значение + Во/µ 0 соответствует намагниченности насыщения I н. Для того чтобы полностью размагнитить ферромагнитное тело, необходимо изменить на­правление внешнего поля. При некотором зна­чении магнитной индукции - В 0к, которой соот­ветствует величина В 0к /µ 0 , называемая коэрцитивной(задерживающей) силoй, намагничен­ность I тела станет равной нулю.

Коэрцитивная сила и форма петли гистерезиса характеризуют свойство ферромагнетика сохранять остаточное намагничивание и определяют использова­ние ферромагнетиков для различных целей. Ферромагнетики с широкой петлей ги­стерезиса называются жесткими магнитными материалами (углеродистые, воль­фрамовые, хромовые, алюминиево-никелевые и другие стали). Они обладают большой коэрцитивной силой и используются для создания постоянных магнитов различной формы (полосовых,подковообразных, магнитных стрелок). К мягким магнитным материалам,обладающим малой коэрцитивной силой и узкой петлей гистерезиса, относятся железо, сплавы железа с никелем. Эти материалы исполь­зуются для изготовления сердечников трансформаторов, генераторов и других устройств, по условиям работы которых происходит перемагничивание в пере­менных магнитных петлях. Перемагничивание ферромагнетика связано с поворотом областей самопроизвольного намагничивания. Работа, необходимая для это­го, совершается за счет энергии внешнего магнитного поля. Количество теплоты, выделяющейся при перемагничивании, пропорционально площади петли гистерезиса.

При температурах меньших точки Кюри любое ферромагнитное тело состоит из доменов - малых областей с линейными размерами порядка 10 -2 -10 -3 см, внутри которых существует наибольшая величина намагниченности, равная намаг­ниченности насыщения. Домены называются иначе областями самопроиз­вольной намагниченности. В отсутствие внешнего магнитного поля векторы магнитных моментов от­дельных доменов ориентированы внутри ферромагнетика совершенно беспорядоч­но, так что суммарный магнитный момент всего тела равен нулю (рис.). Под влиянием внешнего магнитного поля в ферромагнетиках происходит поворот вдоль поля магнитных моментов не отдельных атомов или молекул, как в парамаг­нетиках, а целых областей самопроизвольной намагниченности - доме­нов. При увеличении внешнего поля размеры доменов, намагни­ченных вдоль внешнего поля, растут за счет уменьшения размеров доменов с дру­гими (не совпадающими с направлением внешнего поля) ориентациями. При достаточно сильном внешнем магнитном поле все ферромагнитное тело оказывается намагниченным. Величина намагничен­ности достигает максимального значения - наступает магнитное насыщение. В отсутствие внешнего поля часть магнитных моментов до­менов остается ориентированной, и этим объясняется существование остаточной намагниченности и возможность создания постоянных магнитов .

Применение ферромагнетиков в технике. Роторы генераторов и электродвигателей; сердечники трансформаторов, электромагнитных реле; в электронно-вычислитель­ных машинах (ЭВМ), телефонах, магнитофонах, на магнитных лентах.

Парамагнитные вещества характеризуются тем, что намагничиваются во внешнем магнитном поле; если же это поле выключить, парамагнетики возвращаются в ненамагниченное состояние. Намагниченность в ферромагнетиках сохраняется и после выключения внешнего поля. На рис. 2 представлена типичная петля гистерезиса для магнитно-твердого (с большими потерями) ферромагнитного материала. Она характеризует неоднозначную зависимость намагниченности магнитоупорядоченного материала от напряженности намагничивающего поля. С увеличением напряженности магнитного поля от исходной (нулевой) точки (1) намагничивание идет по штриховой линии 1-2, причем величина m существенно изменяется по мере того, как возрастает намагниченность образца. В точке 2 достигается насыщение, т.е. при дальнейшем увеличении напряженности намагниченность больше не увеличивается. Если теперь постепенно уменьшать величину H до нуля, то кривая B(H) уже не следует по прежнему пути, а проходит через точку 3, обнаруживая как бы "память" материала о "прошлой истории", откуда и название "гистерезис". Очевидно, что при этом сохраняется некоторая остаточная намагниченность (отрезок 1-3). После изменения направления намагничивающего поля на обратное кривая В (Н) проходит точку 4, причем отрезок (1)-(4) соответствует коэрцитивной силе, препятствующей размагничиванию. Дальнейший рост значений (-H) приводит кривую гистерезиса в третий квадрант - участок 4-5. Следующее за этим уменьшение величины (-H) до нуля и затем возрастание положительных значений H приведет к замыканию петли гистерезиса через точки 6, 7 и 2.


Рис. 2. ТИПИЧНАЯ ПЕТЛЯ ГИСТЕРЕЗИСА для магнитно-твердого ферромагнитного материала. В точке 2 достигается магнитное насыщение. Отрезок 1-3 определяет остаточную магнитную индукцию, а отрезок 1-4 - коэрцитивную силу, характеризующую способность образца противостоять размагничиванию.

Магнитно-твердые материалы характеризуются широкой петлей гистерезиса, охватывающей значительную площадь на диаграмме и потому соответствующей большим значениям остаточной намагниченности (магнитной индукции) и коэрцитивной силы. Узкая петля гистерезиса (рис. 3) характерна для магнитно-мягких материалов - таких, как мягкая сталь и специальные сплавы с большой магнитной проницаемостью. Такие сплавы и были созданы с целью снижения обусловленных гистерезисом энергетических потерь. Большинство подобных специальных сплавов, как и ферриты, обладают высоким электрическим сопротивлением, благодаря чему уменьшаются не только магнитные потери, но и электрические, обусловленные вихревыми токами.




Рис. 3. ТИПИЧНАЯ ПЕТЛЯ ГИСТЕРЕЗИСА для магнитно-мягкого материала (например, железа). Поскольку площадь петли пропорциональна потерям энергии, такие материалы слабо сопротивляются размагничиванию и характеризуются малыми потерями энергии.

Магнитные материалы с высокой проницаемостью изготовляются путем отжига, осуществляемого выдерживанием при температуре около 1000° С, с последующим отпуском (постепенным охлаждением) до комнатной температуры. При этом очень существенны предварительная механическая и термическая обработка, а также отсутствие в образце примесей. Для сердечников трансформаторов в начале 20 в. были разработаны кремнистые стали, величина m которых возрастала с увеличением содержания кремния. Между 1915 и 1920 появились пермаллои (сплавы Ni с Fe) с характерной для них узкой и почти прямоугольной петлей гистерезиса. Особенно высокими значениями магнитной проницаемости m при малых значениях H отличаются сплавы гиперник (50% Ni, 50% Fe) и му-металл (75% Ni, 18% Fe, 5% Cu, 2% Cr), тогда как в перминваре (45% Ni, 30% Fe, 25% Co) величина m практически постоянна в широких пределах изменения напряженности поля. Среди современных магнитных материалов следует упомянуть супермаллой - сплав с наивысшей магнитной проницаемостью (в его состав входит 79% Ni, 15% Fe и 5% Mo).

(взято с http://www.phyzika.ru/Magnitnoe.html)

Гистерезис в общем понятии (от греческого – отстающий) — это свойство определенных физических, биологических и иных систем, которые реагируют на соответствующие воздействия с учетом текущего состояния, а также предыстории.

Гистерезис характерен т.н. «насыщением», и различными траекториями соответствующих графиков, отмечающих состояние системы в данный момент времени. Последние, в итоге, имеют форму остроугольной петли.

Если же рассматривать конкретно электротехнику, то каждый электромагнитный сердечник после окончания воздействия электрического тока в течение некоторого времени сохраняет собственное магнитное поле, называемое остаточным магнетизмом.

Его величина зависит, прежде всего, от свойств материала: у закаленной стали она существенно выше, чем у мягкого железа.

Но, в любом случае, явление остаточного магнетизма всегда присутствует при перемагничивании сердечника, когда необходимо размагнитить его до нуля, а затем изменить полюс на противоположный.

Любое изменение направления тока в обмотке электромагнита предусматривает (из-за наличия вышеуказанных свойств материала) предварительное размагничивание сердечника. Только после этого он может поменять свою полярность — это известный закон физики.

Для перемагничивания в обратном направлении необходим соответствующий магнитный поток.

Другими словами: изменение сердечника не «поспевает» за соответствующими изменениями магнитного потока, которое оперативно создает обмотка.

Вот эта временная задержка намагничивания сердечника от изменений магнитных потоков и получило название в электротехнике как гистерезис.

Каждое перемагничивание сердечника предусматривает избавление от остаточного магнетизма путем воздействия противонаправленным магнитным потоком. На практике это приводит к определенным потерям электроэнергии, которые тратятся на преодоление «неправильной» ориентации молекулярных магнитиков.

Последние проявляются в виде выделения тепла, и представляют так называемые затраты на гистерезис.

Таким образом, стальные сердечники, например, статоров или якорей электродвигателей или генераторов, а также , должны иметь по возможности наименьшую корреляционную силу . Это позволит снизить гистерезисные потери, повысив в итоге КПД соответствующего электрического агрегата или прибора.

Сам процесс намагничивания определяется соответствующим графиком – так называемой петлей гистерезиса. Она представляет замкнутую кривую, отображающую зависимость скорости намагничивания от изменения динамики напряженности внешнего поля.

Большая площадь петли подразумевает, соответственно, и большие затраты на перемагничивание.

Также практически во всех электронных приборах наблюдается и такое явление, как тепловой гистерезис – невозвращение после прогрева аппаратуры к изначальному состоянию.

В и явление гистерезиса используется в различных магнитных носителях информации (например, триггерах Шмидта), или в специальных гистерезисных электродвигателях.

Широкое распространение этот физический эффект нашел также в различных устройствах, предназначенных для подавления различных шумов (дребезг контактов, быстрые колебания и т. п.) в процессе переключения логических схем.

Биологические и физические системы способны мгновенно откликаться на приложенное к ним воздействие. Если рассмотреть это явление на временной оси координат, то становится заметно, что отклик зависит от предыстории системы и ее текущего состояния. График, который наглядно демонстрирует это свойство систем, получил название петли гистерезиса, которая отличается остроугольной формой.

Оригинальная форма петли обусловлена эффектом насыщения и неравномерностью траектории между соседними расстояниями. Эффект гистерезиса имеет кардинальные отличия от инерционности, с которой его часто путают, забывая о том, что монотонное сопротивление существенно отличается от мгновенного сопротивления на воздействие.

Петля гистерезиса является циклом, в ходе которого часть свойств системы используются независимо от воздействий, а часть – отправляется на повторную проверку.

Явление гистерезиса в физике

В физике наиболее часто системы сталкиваются со следующими видами гистерезиса:

  • Магнитный – отражает зависимость между векторами напряжения магнитного поля и намагничивания в веществе. Это явление объясняет существование постоянных магнитов.
  • Сепнгетоэлектрический – зависимость между поляризацией сегнетоэлектриков и изменения внешнего электрического поля.
  • Упругий – зависимость деформации упругих материалов от воздействия высоких давлений. Это явление лежит в основе великолепных механических характеристик изделий из кованого метала.

Упругий гистерезис встречается двух основных видов – статический и динамический. В первом случае петля будет равномерной, во втором – постоянно меняющейся.

Применение гистерезиса в электронике

В электротехнике широко применяются устройства, в основе которых лежат магнитные взаимодействия. Наиболее распространение получили магнитные носители данных. Понимание гистерезиса необходимо для подавления в них шумов, таких как быстрые колебания или дребезжание контактов.

В большинстве электронных приборов наблюдается явление теплового гистерезиса. В процессе работы устройства нагреваются, а после охлаждения ряд характеристик уже не могут принять первоначальные явления.

Так, в процессе нагрева происходит расширение микросхем и печатных плат, полупроводниковых кристаллов. В результате развивается механическое напряжение, воздействие которого на элементы системы сохраняется после остывания. Особенно ярко тепловой гистерезис проявляется в высокоточных источниках опорного напряжения.

Чтобы лучше понять, что такое магнитный гистерезис, нужно разобраться, где и при каких условиях он возникает.

Основные понятия

Магнитное поле – это одна из составляющих электромагнитного поля, характеризующаяся своим силовым действием на движущиеся заряженные частицы.

Вектор магнитной индукции B – это основная силовая величина магнитного поля.

Намагниченность M – это величина, которая характеризует магнитное состояние вещества.

Напряженность магнитного поля – это характеристика магнитного поля, которая равна разности магнитной индукции и намагниченности.

Ферромагнитный материал – это материал, намагниченность которого зависит от напряженности внешнего магнитного поля.

Допустим, мы имеем катушку, внутри которой имеется сердечник из ферромагнитного материала. Обычно такой сердечник состоит из железа, никеля, кобальта и различных соединений на их основе. Если подключить её к источнику переменного тока , то вокруг катушки образуется магнитное поле, которое будет изменяться по закону

График зависимости B (H)

Участок 0-1 называется кривой первоначального намагничивания. Благодаря ей мы можем увидеть, как меняется магнитная индукция в размагниченной катушке.

После насыщения (то есть точки 1) с уменьшением напряженности магнитного поля до нуля (участок 1-2), мы видим, что сердечник остался намагниченным на величину остаточной намагниченности Br. Это и называется явлением магнитного гистерезиса.

С точки зрения физики остаточная намагниченность объясняется тем, что в ферромагнетиках существуют сильные магнитные связи между молекулами, благодаря которым создаются беспорядочно направленные магнитные моменты. Под воздействием внешнего поля, они принимают направления поля, а после его снятия, часть магнитных моментов остаются направленными. Поэтому вещество остается намагниченным.

После изменения направления тока в катушке размагничивание продолжается (участок 2-3) до пересечения оси абсцисс. Участок 3-0 называется коэрцитивной силой Hc. Это величина, которая необходима для уничтожения поля в сердечнике. Далее аналогично происходит намагничивание сердечника до насыщения (участок 3-4) и обратно размагничивание на участке 4-5 и 5-6, с последующим намагничиванием до точки 1. Весь этот график называется петлей магнитного гистерезиса.

Если многократно намагнитить сердечник с напряженностью и индукцией магнитного поля, меньшими чем при насыщении, то можно получить семейство кривых, из которых в дальнейшем можно построить основную кривую намагничивания (0-1-2). Эта кривая зачастую требуется при электротехнических расчетах магнитных систем.

В зависимости от ширины петли гистерезиса, ферромагнитные материалы делят на магнитотвердые и магнитомягкие. Магнитотвердые вещества обладают большими значениями остаточной намагниченности и коэрцитивной силы. Магнитомягкие вещества, такие как электротехническая сталь применяют в трансформаторах, электрических машинах,электромагнитах , благодаря небольшой коэрцитивной силе и большому значению магнитной проницаемости.

Различные ферромагнитные материалы обладают неодинаковой способностью проводить магнитный поток. Основной характеристикой ферромагнитного материала является петля магнитного гистерезиса В(Н) . Эта зависимость определяет значение магнитной индукции, которая будет возбуждена в магнитопроводе из данного материала при воздействии некоторой напряженности поля.

Рассмотрим процесс перемагничивания ферромагнетика. Пусть первоначально он был полностью размагничен. Сначала индукция быстро возрастает за счет того, что магнитные диполи ориентируются по силовым линиям поля, добавляя свой магнитный поток к внешнему. Затем ее рост замедляется по мере того, как количество неориентированных диполей уменьшается и, наконец, когда практически все они ориентируются по внешнему полю рост индукции прекращается и наступает режим насыщения.

Если процесс циклического перемагничивания повторять при разных амплитудных значениях тока (Н ), то получим семейство петель магнитного гистерезиса. При некотором максимальном значении тока, а значит Н max , площадь петли гистерезиса практически не увеличивается. Наибольшая по площади петля называется предельной петлей гистерезиса.

Кривая, соединяющая вершины петель - на рисунке жирная линия, называется основной кривой намагничивания.

После нескольких (около 10) циклов изменения напряженности от положительного до отрицательного максимальных значений зависимость B =f (H ) начнет повторяться и приобретет характерный вид симметричной замкнутой кривой, называемой петлей гистерезиса . Гистерезисом называют отставание изменения индукции от напряженности магнитного поля .

Симметричная петля гистерезиса, полученная при максимальной напряженности поля H m , соответствующей насыщению ферромагнетика, называется предельным циклом .

Для предельного цикла устанавливают также значения индукции B r при H = 0, которое называется остаточной индукцией , и значение H c при B = 0, называемое коэрцитивной силой . Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.

Форма и характерные точки предельного цикла определяют свойства ферромагнетика. Вещества с большой остаточной индукцией, коэрцитивной силой и площадью петли гистерезиса (кривая 1 рис.8а) называются магнитнотвердыми .

Они используются для изготовления постоянных магнитов. Вещества с малой остаточной индукцией и площадью петли гистерезиса (кривая 2 рис.8а) называются магнитномягкими и используются для изготовления магнитопроводов электротехнических устройств, в особенности работающих при периодически изменяющемся магнитном потоке.


Свойства ферромагнитных материалов в переменных магнитных полях

При возбуждении переменного магнитного потока в магнитопроводах электротехнических устройств происходит непрерывное циклическое перемагничивание ферромагнитного материала.

В каждый момент времени магнитное состояние материала определяется точкой В (Н ) на симметричной петле (рис. 9), по конфигурации похожей на петлю магнитного гистерезиса. Получаемая при быстрых перемагничиваниях петля называется динамической петлей , и она отличается от статической петли магнитного гистерезиса, получаемой при медленных перемагничиваниях. Динамическая петля (показана пунктиром) шире статической.