Характеристика металла магния. Магний (Mg) – металлический «двигатель» организма

Магний – это щелочноземельный пластичный металл серебристо-белого цвета (см. фото). В периодической таблице Менделеева обозначен как Mg - от лат. Magnesium. Так назывался город в Азии, в районе которого обнаружены залежи магнезита. В конце 17 века в Англии из минеральной воды была добыта соль с горьким вкусом, оказывающая слабительное действие. Ей дали название эпсомской соли. В ее состав и входит магний. А в чистом виде его выделил уже в 1808 году, в той же Англии, сэр Гемфри Дэви.

В природе в очень больших количествах встречается в земной коре в виде минералов (доломита, брусита и магнезита), в морской воде и солевых озерах.

Существует мнение, что химический состав человеческого организма подобен составу мирового океана. Соответственно, магний принимает активнейшее участие в биохимических реакциях любого живого организма.

Действие магния, его роль и функции в организме

Действие микроэлемента заключается в участии в метаболизме организма, и следовательно, магний является одним из основных элементов жизнедеятельности. Он активирует работу более трехсот ферментов и витаминов группы В, участвует в углеводном, белковом и липидном обменах.

Магний называют «металлом жизни», ведь без его действия, то есть без тех функций, что он выполняет в организме станут невозможными многие физиологические процессы. И, в первую очередь, такие важные как функционирование нервной и мышечной тканей. За эти свойства для всех биологов магний стоит в одном ряду с кислородом, углеродом, азотом и водородом – самыми важными элементами во всех живых организмах.

Благодаря действию магния происходит терморегуляция организма, обмен натрия, кальция, фосфора и витамина С. Его активная форма – положительные ионы, которые и образуют органические соединения. Эти же ионы регулируют функционирование нервной ткани и мышц, а на клеточном уровне контролирует работу калий-натриевого насоса.

Самое большое количество микроэлемента скапливается в костях, мышцах, печени и тканях нервной системы. В организме не синтезируется, поэтому его источниками являются продукты питания, соль и вода. Оказав полезное действие, магний удаляется продуктами жизнедеятельности кишечника.

Магний играет очень важную роль в организме, ведь он один контролирует всю работу клеток – формирование белка, обмен веществ, деление и очистка. Этот микроэлемент жизненно важен для всех иммунных процессов, в случаях аллергии, стрессов, воспалений действует как противотоксичный и противоанафилактический фактор.

Магний – сильное лекарственное средство от многих заболеваний: инфаркт миокарда, нервные заболевания, склероз, лейкемия и другие онкологические болезни.

В комплексе с витамином В6 он синтезирует лецитин – аминокислоту, которая регулирует количество холестерина. И таким способом магний воздействует на сердце и сосуды.

Итак, подведем итоги действия магния на организм:

Суточная норма - какова потребность организма в элементе?

Суточная норма микроэлемента в среднем составляет 400 мг, а точнее рассчитывается в пропорции 0,05% от общей массы тела. Так, для детей нормой будет принятие 200 мг, для беременных и кормящих женщин – 450-500 мг, а для людей, подвергающимся длительным физическим нагрузкам или тренировкам потребность возрастает до 600 мг.

Недостаток магния в организме - симптомы и причины дефицита

Недостаток микроэлемента в организме приводит к большому разнообразию симптомов, которые многие могут принять за следствия какого-нибудь заболевания.

Есть такое выражение: «Мы то, что мы едим». Ведь получается, что изменив немного свой рацион в ту или иную сторону, мы можем сместить баланс веществ в организме, нанося ему вред или принося пользу. В случае с магнием, это самая верная политика.

Симптомы нехватки микроэлемента:

Довольно много? Одно утешение – одновременно они не проявляются, но даже поодиночке могут доставлять неприятные ощущения. И в первую очередь, все-таки стоит проверить уровень магния в крови, да и других элементов, прежде чем принимать узконаправленное лечение от какой-либо болезни. Лекарство может даже нанести вред.

Кстати, женщины сложнее переносят недостаток магния, что связано с физиологическими и гормональными особенностями. С дефицитом этого элемента как раз и связаны симптомы ПМС – раздражительность, отечность, болезненные явления.

Для женщин также будет важен тот факт, что магний не последний элемент в синтезе коллагена – белка, представляющего основу красоты кожи и упругости сухожилий.

Недостаток может быть вызван неправильным питанием, при дефиците витамина D, алкогольной и наркотической зависимости, при панкреатите и сбоях паращитовидной железы, употреблением гормональных препаратов.

Еще более реальными причинами дефицита магния в современном мире можно назвать увеличенные физические и умственные нагрузки, частые стрессы, «знаменитый» фаст-фуд. А если копнуть глубже, то окажется, что наши земли уже сильно обеднены интенсивными урожаями, металлами, удобрениями органического характера и промышленными токсическими отходами. По результатам исследований Всемирной организации здравоохранения содержание минералов и полезных веществ в продуктах растительного происхождения уменьшилось в 10-20 раз.

Есть интересное наблюдение, что в городах с жесткой водопроводной водой с преобладанием кальция, здоровье у людей в лучшем состоянии, чем при мягкой питьевой воде. У жителей спокойнее ритм сердца, меньше холестерина в сосудах, меньше гипо- и гипертоников. Мало того, в местностях с высоким содержанием магния в почве и воде - рекордно низкий уровень заболеваний онкологического характера.

Кстати, жители городов, особенно мегаполисов живут в постоянном стрессовом состоянии, при котором основная масса магния попросту сгорает, и так появляется цепная реакция, развивающая еще большие стрессы. Т.е. магний расходуется и тем самым вызывает еще большую нехватку. Такое состояние к тому же вызывает большие энергетические потери.

Нехватка магния у детей

Родителям часто кажется, что чем больше ребенок занят учебой и дополнительными факультативами, тем лучше для него же. И мало кто задумывается, что сама школа, спортивные секции и разнообразные кружки способны быстро истощить нервную систему и создать дефицит магния.

Стоит обратить внимание на такие симптомы, как быстрая утомляемость, а соответственно, и проблемы со сном и концентрацией, вялость, капризы, судороги. Все это может служить признаком нехватки микроэлемента.

Избыток магния - симптомы

В отношении человеческого организма очень важно соблюдать меру. В отношении магния, как микроэлемента принцип «чем больше, тем лучше» не самый лучший вариант. Т.к. его избыток также наносит вред, как и нехватка. Первыми признаками являются сонливость, вялость и угнетенное состояние. Это происходит за счет торможения усвоения кальция избытком магния, что вызывает эффект наркоза.

Замедляется сердечный ритм, снижается кровяное давление, жажда, рвота, слабость в мышцах – таковы симптомы интоксикации магнием.

А причинами служат: почечная недостаточность, обезвоживание, передозировка препаратов, содержащих магний (особенно при внутривенном введении), термическая обработка и консервация продуктов.

В каких пищевых источниках содержится?

Магний в продуктах питания является компонентом любой пищевой цепочки. Т.е. любую пищу, которая не подвергалась термообработке, можно назвать носителем магния, хоть и в разных количествах. Самыми богатыми на магний являются необработанные злаки (обработка «убивает» до 80% элемента), орехи и бобы. Также хорошим источником можно назвать питьевую воду, при условии, что она содержит много кальция.

Другими пищевыми источниками являются кунжут, зелень, шпинат, крупы, молоко и кисломолочные продукты, морепродукты, говядина, ржаной хлеб, сухофрукты (курага, инжир).

Нелишним будет и прием препаратов магния, но принимать их стоит только лишь после консультации с врачом, который определит необходимость в приеме и дозировку. Хотя часто достаточно изменить принципы питания.

Самыми эффективными стоит назвать добавки в комплексе с оротовой кислотой, они будут полезны гипертоникам, принимающим мочегонные препараты.

Избыток магния очень сложно получить из-за того, что продукты в нашем рационе, чаще всего изначально бедны магнием, благодаря современным «технологиям».

Взаимодействие с другими веществами

Взаимодействуя с другими веществами, магний оказывает два полярных действия: он либо дополняет, либо противоречит. Так, например, витамин В6 помогает ему усвоится, а кальций препятствует всасыванию в ЖКТ (оптимальное соотношение кальция к магнию 2:1).

Также магний снижает эффективность антибиотиков тетрациклинового ряда, препаратов железа и антикоагулянтов, поэтому медики рекомендуют соблюдать минимум трехчасовой интервал между их приемами.

А вот жиры и волокнистая пища уменьшают полезные качества элемента, образовывая неусвояемые соли.

При приеме фолиевой кислоты и витамина D3 вырастает активность ферментов и кальция, а значит и потребность в магнии.

Хорошо помогают микроэлементу усвоиться витамины А, В6, С, D, Е и фосфор в адекватном количестве.

Большое количество сахара вызывает увеличение выделения магния с мочой, вследствие метаболизма инсулина, также как и высокобелковый рацион влияет на организм, которому постоянно нужны новые и качественные стройматериалы (спортсмены, беременные и кормящие женщины).

Дефицит магния вызывается приемом дигиталиса, диуретики (фуросемид).

Не стоит забывать о консультациях специалистов во избежание проблем со здоровьем.

Показания к назначению

Показания к назначению микроэлемента в виде медикаментов:

  • дефицит магния;
  • судороги, утомляемость;
  • психологическая и эмоциональная нестабильность, проблемы со сном;
  • тахикардия, нарушения работы ЖКТ;
  • угроза преждевременных родов;
  • эпилепсия.
Магний
Атомный номер 12
Внешний вид простого вещества

лёгкий, ковкий, серебристо-белый металл

Свойства атома
Атомная масса
(молярная масса)
24,305 а. е. м. ( /моль)
Радиус атома 160 пм
Энергия ионизации
(первый электрон)
737,3 (7,64) кДж/моль (эВ)
Электронная конфигурация 3s 2
Химические свойства
Ковалентный радиус 136 пм
Радиус иона 66 (+2e) пм
Электроотрицательность
(по Полингу)
1,31
Электродный потенциал −2,37 В
Степени окисления 2
Термодинамические свойства простого вещества
Плотность 1,738 г/см³
Молярная теплоёмкость 24,90 Дж/(K·моль)
Теплопроводность 156 Вт/(м·K)
Температура плавления 922 K
Теплота плавления 9,20 кДж/моль
Температура кипения 1 363 K
Теплота испарения 131,8 кДж/моль
Молярный объём 14,0 см³/моль
Кристаллическая решётка простого вещества
Структура решётки гексагональная
Параметры решётки a=3,210 c=5,21 Å
Отношение c/a 1,624
Температура Дебая 318 K
Mg 12
24,305
3s 2
Магний

Магний — элемент главной подгруппы второй группы, третьего периода периодической системы химических элементов, с атомным номером 12. Обозначается символом Mg Magnesium. Простое вещество магний (CAS-номер: 7439-95-4) — лёгкий, ковкий металл серебристо-белого цвета.

История

Происхождение названия

В 1695 году из минеральной воды Эпсомского источника в Англии выделили соль, обладавшую горьким вкусом и слабительным действием. Аптекари называли её горькой солью, а также английской, или эпсомской солью. Минерал эпсомит имеет состав MgSO 4 · 7H 2 O.

Впервые был выделен в чистом виде сэром Хемфри Дэви в 1808 году.

Получение

Обычный промышленный метод получения металлического магния — это электролиз расплава смеси безводных хлоридов магния MgCl 2 (бишофит), натрия NaCl и калия KCl. В этом расплаве электрохимическому восстановлению подвергается хлорид магния:

MgCl 2 (электролиз) = Mg + Cl 2 .

Расплавленный металл периодически отбирают из электролизной ванны, а в нее добавляют новые порции магнийсодержащего сырья. Так как полученный таким способом магний содержит сравнительно много — около 0,1 % примесей, при необходимости «сырой» магний подвергают дополнительной очистке. С этой целью используют электролитическое рафинирование, переплавку в вакууме с использованием специальных добавок — флюсов, которые «отнимают» примеси от магния, или перегонку (сублимацию) металла в вакууме. Чистота рафинированного магния достигает 99,999 % и выше.

Разработан и другой способ получения магния — термический. В этом случае для восстановления оксида магния при высокой температуре используют кокс:

или кремний. Применение кремния позволяет получать магний из такого сырья, как доломит CaCO 3 ·MgCO 3 , не проводя предварительного разделения магния и кальция. С участием доломита протекают реакции:

CaCO 3 ·MgCO 3 = CaO + MgO + 2CO 2 ,

2MgO + CaO + Si = Ca 2 SiO 4 + 2Mg.

Преимущество термического способа состоит в том, что он позволяет получать магний более высокой чистоты. Для получения магния используют не только минеральное сырье, но и морскую воду.

Физические свойства

Магний — очень легкий, довольно хрупкий металл, постепенно окисляется на воздухе, превращаясь в белый оксид магния. Кристаллическая решетка α-формы Ca (устойчивой при обычной температуре) гранецентрированная кубическая, а = 5,56Å. Атомный радиус 1,97Å, ионный радиус Ca2+, 1,04Å. Плотность 1,74 г/см³(20 °C). Выше 464 °C устойчива гексагональная β-форма. t пл = 650 °C, t кип = 1105 °C; температурный коэффициент линейного расширения 22.10-6 (0-300 °C); теплопроводность при 20 °C 125,6 Вт/(м.К) или 0,3 кал/(см.сек.°C); удельная теплоемкость (0-100 °C) 623,9 дж/(кг.К) или 0,149 кал/(г.°C); удельное электросопротивление при 20 °C 4,6.10-8 ом.м или 4,6.10-6ом.см; температурный коэффициент электросопротивления 4,57.10-3 (20 °C). Модуль упругости 26 Гн/м² (2600 кгс/мм²); предел прочности при растяжении 60 Мн/м² (6 кгс/мм²); предел упругости 4 Мн/м² (0,4 кгс/мм²), предел текучести 38 Мн/м² (3,8 кгс/мм²); относительное удлинение 50 %; твердость по Бринеллю 200—300 Мн/м² (20-30 кгс/мм²). Магний достаточно высокой чистоты пластичен, хорошо прессуется, прокатывается и поддается обработке резанием.

Химические свойства

Смесь порошкового магния с перманганатом калия KMnO 4 — взрывчатое вещество! Раскаленный магний реагирует с водой:
Mg (раск.) + Н 2 О = MgO + H 2 ;
Щелочи на магний не действуют, в кислотах он растворяется легко с выделением водорода:
Mg + 2HCl = MgCl 2 + H 2 ;
При нагревании на воздухе магний сгорает, с образованием оксида, также с азотом может образовываться небольшое количество нитрида:
2Mg + О 2 = 2MgO;
3Mg + N 2 = Mg 3 N 2

Определение

Серебристо-белый, средний по твердости металл. Средне распространен в природе. При горении выделяется большое количество света и тепла.

Применение

Сплавы

Сплавы на основе магния являются важным конструкционным материалом в авиационной и автомобильной промышленности благодаря их лёгкости и прочности. Цены на магний в слитках в 2006 году составили в среднем 3 долл/кг.

Химические источники тока

Магний в виде чистого металла, а так же его химические соединения (бромид, перхлорат) применяются для производства очень мощных резервных электрических батарей (например магний-перхлоратный элемент, серно-магниевый элемент, хлористосвинцово-магниевый элемент, хлорсеребряно-магниевый элемент, хлористомедно-магниевый элемент, магний-ванадиевый элемент и др), и сухих элементов (марганцево-магниевый элемент, висмутисто-магниевый элемент, магний-м-ДНБ элемент и др). ХИТ на основе магния отличаются очень высокими значениями удельных энергетических характеристик и высоким разрядным напряжением. В последние годы в ряде стран обострилась проблема разработки аккумулятора с большим сроком службы, так как теоретические данные позволяют утверждать очень большие перспективы его широкого использования (высокая энергия, экологичность, доступность сырья).

Соединения

Гидрид магния — один из наиболее емких аккумуляторов водорода, применяемых для его хранения.

Огнеупорные материалы

Оксид магния MgO применяется в качестве огнеупорного материала для производства тиглей и специальной футеровки металлургических печей.

Перхлорат магния, Mg(ClO 4) 2 — (ангидрон) применяется для глубокой осушки газов в лабораториях, и в качестве электролита для химических источников тока с участием магния.

Фторид магния MgF 2 — в виде синтетических монокристаллов применяется в оптике (линзы, призмы).

Бромид магния MgBr 2 — в качестве электролита для химических резервных источников тока.

Медицина

Оксид и соли магния применяется в медицине (аспаркам, сульфат магния, цитрат магния, минерал бишофит). Бишофитотерапия использует биологические эффекты природного магния в лечении и реабилитации широкого круга заболеваний, в первую очередь — опорно-двигательного аппарата, нервной и сердечно-сосудистой систем.

Фотография

Магниевый порошок с окисляющими добавками (нитрат бария, нитрат аммония, перманганат калия, гипохлорит натрия, хлорат калия и т. д.) применялся (и применяется сейчас в редких случаях) в фотоделе в химических фотовспышках (магниевая фотовспышка).

Биологическая роль и токсикология

Магний — один из важных биогенных элементов, в значительных количествах содержится в тканях животных и растений. Магний является кофактором многих ферментативных реакций. Магний необходим для превращения креатина фосфата в АТФ — нуклеотид, являющийся универсальным поставщиком энергии в живых клетках организма. Поэтому магний является тем элементом, который контролирует энергетику организма. Магний необходим на всех этапах синтеза белка. Установлено также, что 80—90 % современных людей страдают от дефицита магния. Это может проявляться по-разному: бессоница, хроническая усталость, остеопороз, артрит, фибромиалгия, мигрень, мышечные судороги и спазмы, сердечная аритмия, запоры, предменструальный синдром (ПМС) и прочие симптомы и болезни. А при частом употреблении слабительных, алкоголя, больших психических и физических нагрузках потребность в магнии увеличивается.

К пище, богатой магнием, относятся: кунжут, отруби, орехи. Магния совсем мало в хлебе, молочных, мясных и других повседневных продуктах питания современного человека. Для получения суточной нормы магния, порядка 300 мг для женщин и 400 мг для мужчин, необходимо выпивать 2—3 литра молока или съедать 1,5—2 кг мяса.

По результатам последних исследований обнаружено, что цитрат магния является наиболее усваиваемым магниесодержащим продуктом.

Установлено, что чтобы усвоить кальций, организму необходим магний. Одним из наиболее биологически целесообразных источников магния при транскутанном (чрезкожном) всасывании является минерал бишофит, широко использующийся в целях медицинской реабилитации, физиотерапии и санаторно-курортного лечения.

Магний, Magnesium, Mg (12)
Название магнезия встречается уже в Лейденском папирусе-Х (Ш в.). Оно происходит, вероятно, от названия города в гористой местности Фессалии — Магнисия. Магнесийским камнем в древности назывались магнитная окись железа, а магнесом — магнит. Эти названия перешли в латинский и другие языки.

Внешнее сходство магнитной окиси железа с пиролизитом (двуокисью марганца) привело к тому, что магнезийским камнем, магнетисом и магне стали называть минералы и руды темной и темно-коричневой окраски, а в дальнейшем и другие минералы. В алхимической литературе слово магнес (Magnes) обозначало многие вещества, например ртуть, эфиопский камень, гераклийский камень. Минералы, rдержащие магний, тоже были известны с глубокой древности (доломит, тальк, асбест, нефрит и др.) и уже тогда находили широкое применение. Однако их считали не индивидуальными веществами, а видоизменениями других, более известных минералов, чаще всего извести.

Установить тот факт, что в магнийсодержащих минералах и солях присутствует особое металлическое основание, помогли исследования минеральной воды Эпсомского источника в Англии, открытого в 1618 г. Твердую соль из горькой эпсомской воды выделил в 1695 г. Грю, указав при этом, что по своей природе эта соль заметно отличается от всех других солей. В XVIII в. эпсомской солью занимались многие видные химики-аналитики — Бергман, Нейман, Блэк и др. Когда в континентальной Европе были открыты источники воды, подобной эпсомской, эти исследования расширились еще больше. По-видимому, Нейман первым предложил называть эпсомскую соль (карбонат магния) белой магнезией в отличие от черной магнезии (пиролюзита). Земля белой магнезии (Magnesia alba) под названием магнезия фигурирует в списке простых тел Лавуазье, причем синонимом этой земли Лавуазье считает «основание эпсомской соли» (base de sel d"Epsom).

В русской литературе начала XIX в. магнезия именовалась иногда горькоземом. В 1808 г. Дэви, подвергая белую магнезию электролизу, получил немного нечистого металлического магния; в чистом виде этот металл был получен Бусси в 1829 г. Вначале Дэви предложил назвать новый металл магнием (Magnium) в отличие от магнезии, которая в то время обозначала металлическое основание пиролюзита (Magnesium). Однако, когда название черной магнезии было изменено, Дэви предпочел называть металл магнезием. Интересно, что первоначальное название магний уцелело только в русском языке благодаря учебнику Гесса. В начале XIX в. предлагались и другие названия — магнезь (Страхов), магнезий, горькоземий (Щеглов).

Магний был впервые обнаружен в районе Фессалия, Греция, и назван Магнезия. Это третий самый распространенный металлический элемент в земной коре, однако он редко в чистом виде из-за того, что легко образует связи с другими элементами. Металлический магний впервые был получен из руды в 1808 году в небольших количествах сэром Хамфри Дэви, а промышленное производство впервые началось в 1886 году в Германии.

Магний является самым легким из всех широко используемых конструкционных материалов с плотностью 1,7 г/см3 (106,13 фунтов /куб.фут), примерно на одну треть легче, чем алюминий и титан, и одна четверть плотности стали. Несмотря на это преимущество, производство первичного магния в 2012 году составило 905 тыс. тонн, только 2,5% производства первичного алюминия (45,2 млн. тонн) и 0,06% производства необработанной стали (1546 млн. тонн). Однако объем производства магния больше, чем титана (211 тыс. тонн).

Небольшие добавки магния в алюминий придают огнестойкость и прочность. Близость магния с серой делает его незаменимым в производстве определенных сортов сырой стали. С помощью магния также восстанавливают металлического титана из тетрахлорида титана в процессе Кролла, а также получают очень качественные сорта чугуна. Вместе на эти четыре сферы приходилось 61% потребления магния в 2012 году. Таким образом, несмотря на свой относительный статус «пескаря» в структуре производства материалов, магний играет центральную роль в изготовлении и использовании конкурирующих металлических продуктов.

Поставки магния

Мировое производство первичного магния, по оценкам Roskill, увеличилось с 499 тыс. тонн в 2002 году до 905 тыс. тонн в 2012 году, среднегодовой темп роста (CAGR) - 6,1%. Производство первичного металла магния ограничивается десятью странами.

Китай продолжает доминировать в производстве первичного металлического магния. Страна произвела более 730 тысяч тонн металла в 2012 году, и на ее долю в этот год пришлось более чем 75% от общего объема поставок. В Китае, однако, имел место сдвиг в производстве. Обильный и дешевый газ в качестве побочного продукта при производстве кокса побудил производителей магния обратить свое внимание на провинцию Шэньси в поисках более высокой прибыли. Это заставило некоторые традиционные магниевые провинции бороться с конкурентами, а в целом в китайской промышленности магния коэффициент использования производственных мощностей едва превышает 50%. Кроме того, в Китае была произведена консолидация в промышленности, и восемь китайских производителей сейчас находятся в топ-10 глобальных производителей.

Несмотря на недавние усилия китайского правительства по консолидации отрасли, большинство китайских производственных мощностей по-прежнему разбросаны на относительно небольших заводах, а консолидация, в основном, происходит на корпоративном уровне. Восемь китайских компаний находятся в топ-10 мировых поставщиков по мощности, которая для каждой превышает 50 тыс. тонн в год, хотя только пять из них в 2011 году произвели более 30 тыс. тонн, а одна закрылась в 2012 году.

Количество компаний с мощностью ниже 50 тыс. тонн, и производством намного меньше, чем 30 тыс. тонн, неизвестно, но Roskill оценивает их число примерно в 50. В совокупности, на эти небольшие заводы пришлось около трети мировых мощностей в 2012 году.


Источник: "Металлический магний: глобальные промышленные рынки и перспективы, 2012 год", Roskill Information Services Ltd.

Несмотря на несколько закрытых предприятий в преддверии спада 2008/09 годов, особенно в Канаде, производство в США, России и Израиля с тех пор увеличилось, хотя и в значительной степени удовлетворяет спрос со стороны растущей промышленности по выпуску металлического титана. Вторичное производство магния более равномерно распространено по всему миру, где США по-прежнему являются переработчиком номер один. Новые заводы по производству первичного магния были открыты в Малайзии и Южной Корее в 2010 году, а Иран должен был последовать их примеру в 2013 году. Ожидаемый запуск электролитического завода Цинхай Солт-Лейк в Китае, мощностью 100 тыс. тонн в год, может еще и изменить расстановку сил в Китае на короткий срок.

Основными производителями первичного магния за пределами Китая являются ВСМПО-Ависма и Соликамский магниевый завод в России; US Magnesium в США; Dead Sea Magnesium в Израиле; Усть-Каменогорский титано-магниевый комбинат в Казахстане; Rima Industrial в Бразилии; CVM Minerals в Малайзии; Magnohrom в Сербии; и POSCO в Южной Корее.

Вторичный магний из переработанных магниевых сплавов, и в качестве компонента переработанных алюминиевых сплавов, является важным источником поставок, в частности, в США, где он составляет около половины от общего объема поставок. Он имеет гораздо меньшее значение в других местах. Мировые мощности и производство вторичного магния (за исключением алюминиевых сплавов, которые образуют цикл с обратной связью) оцениваются Roskill более чем в 200 тыс. тонн в год, при этом около 40% мощностей сосредоточены в США.

Большая часть международной торговли магнием - это экспорт из Китая, на долю которого приходилось половина экспорта необработанного магния (99,8% Mg экспорт необработанной магния в 2012 году. Этот материал в основном импортируют Канада, Япония и Европа. Американский рынок защищен от китайского импорта высокими антидемпинговыми пошлинами, и магний в страну поставляется из Израиля, либо это внутреннее первичное и вторичное производство. По данным Global Trade Atlas, проанализированным Roskill, международная торговля необработанным магния упала с примерно 500 тыс. тонн в 2007 году до 305 тыс. тонн в 2009 году, выросла до 480 тыс. тонн в 2011 году, но немного упала в 2012 году.

Около 50 тыс. тонн отходов и лома было продано в 2012 году (по сравнению с 62 тыс. тонн в 2007 году), и это, в основном, экспорт из Канады, Германии и Австрии и импорт в США, Чехию и Венгрию. Кроме того, примерно 110 тыс. тонн были проданы в 2012 году в виде опилок, стружек, гранул и порошка, при этом, в основном, это экспорт из Китая и импорт в Германию, Турцию и Канаду. Наконец, 37 тыс. тонн кованых изделий были проданы в 2012 году (по сравнению с 46 тыс. тонн в 2011 году), и это, в основном, экспорт из Китая, Австрии и Германии, и импорт в Тайвань, Новую Зеландию и Великобританию.

Спрос на магний

Глобальное видимое потребление (производство + импорт - экспорт) магния, достигло 1050 тыс. тонн в 2007 году, среднегодовой темп роста 8% по сравнению с 630 тыс. тонн, потребленными в 2001 году. Потребление первичного металлического магния сократилось на 7% в 2008 году и еще на 15% в 2009 году, упав ниже 690 тыс. тонн, так как мировой экономический кризис привел к значительному снижению спроса на содержащие магний продукты.

Однако рынок восстановился, превысив уровень 2007 года в 2011 году и показав новый пик спроса в 2012 году. Вторичное использование магния дополнительно увеличило потребление, а общий объем потребления магния превысил 1 млн. тонн в 2007 году и 1,1 млн. тонн в 2012 году.

Китай доминирует в мировом потреблении с объемом в 340 тыс. тонн в 2012 году, 33% от общего объема. Другие крупные рынки для магния - это Северная Америка (23% мирового потребления) и Европа (18%). Россия и Япония также крупные потребители, на их долю в совокупности приходится 12%.

Исторически сложилось так, что алюминиевые сплавы являются основной сферой применения магния во всем мире, хотя в 2012 году объем потребления магния в этой конечной сфере потребления и объем потребления магния в сплавах для литья под давлением сравнялись, при этом на каждую сферу приходилось около 365 тыс. тонн, или 33% от общего объема потребления. Упаковочная промышленность является крупнейшим рынком для магния в алюминиевых сплавах, затем следует транспорт, строительство и потребительские товары длительного пользования.

Автомобильная промышленность на сегодняшний день является крупнейшим потребителем компонентов литого магния. Литье под давлением из магниевого сплава используется для корпусов, узлов, кронштейнов и других компонентов для всех слоев автотранспортных средств. Среднее применение магния на автомобиль в 2012 году было 2,3 кг, а в некоторых моделях достигало 26 кг. Магний применяется в изготовлении литых корпусов для устройств связи (например, мобильные телефоны и смартфоны), ноутбуков, планшетных компьютеров и другого электронного оборудования. Это является второй по величине сферой использования литого магния, после автомобилей.

Производство титановой губки (т.е. сырого металлического титана) было третьей по величине сферой потребления магния, на которую приходилось около 123 тыс. тонн или 11% от общего мирового потребления в 2012 году, а десульфуризация стала четвертой по величине сферой использования, с объемом 119 тыс. тонн в 2012 году. Использование магния в сталеплавильном производстве уменьшилось в последние годы, в связи с глобальным экономическим кризисом и, как следствие, замедлением роста (или снижением) производства стали во многих странах. В среднем, в мире используется примерно 50 г/т стали.


Источник: "Металлический магний: Глобальные промышленные рынки и перспективы, 2012 год", Roskill Information Services Ltd.

Магний также используется в других приложениях, например, как сфероидизирующий модификатор для чугуна и как катодная защита, способ предотвращения коррозии, вынуждающий все поверхности металлической структуры быть катодами через предоставление внешних анодов активных металлов. По оценкам Roskill, использование магния для этих двух приложений было порядка 65 тыс. тонн и 60 тыс. тонн в 2012 году.

В то время как рост производства автомобилей в некоторых регионах повысил потребление с 2008/09 спада, рынок был несколько сдержан снижением европейских поставок транспортных средств. Тем не менее, в результате давления от сокращения выбросов, рост использования магния в транспортной сфере продолжает опережать использование металла в традиционных материалах, такие как сталь, и рынок литья под давлением, как прогнозируется, будет расти на 6-7% в год до 2017 года. В алюминиевых сплавах, магний используется преимущественно в упаковках, а этот рынок продолжает показывать сильное расширение, ввиду экономического роста в развивающихся странах.

Облегчение веса автомобилей и Китай стимулируют рост спроса на магний

По оценкам Roskill, потребление магния достигло нового пика в 2012 году, 1,1 млн. тонн, при этом спрос увеличивался на 5,5% в год в течение последнего десятилетия. Крупнейшими отраслями-потребителями магния остаются промышленность литья под давлением и алюминиевые сплавы, на каждую из которых приходится треть от общего потребления. Транспортная промышленность является крупнейшим потребителем литья и вторым крупнейшим потребителем металла, после алюминиево-магниевых сплавов в упаковках.

Промышленность магния имеет выгоду от роста автомобильного производства, во главе с Китаем, а также повышения удельного расхода магния в автомобилях, так как производители стремятся соответствовать введенным государственным целевым показателям сокращения выбросов, а рост стоимости топлива влияет на потребительские покупательные тенденции. Постоянные усилия по снижение веса означают, что рост потребления магния будет продолжаться, по крайней, на 5,0% в год до 2017 года. Использование магния в литых деталях, скорее всего, будет расти быстрее, на 6,5% в год, но рынок будет сдерживаться более низкими темпами роста десульфурации и сфероидизирующего отжига стали.

Рост китайского потребления более чем компенсировал небольшое падение в остальных странах мира с 2007 года, а на Азию в 2012 году приходилось 43% от общемирового объема по сравнению с 35% пять лет назад. На долю Северной Америки приходилось 20% потребления, а Европы - 15%. Индия и Южная Корея показали уверенный рост потребления за последние пять лет, но при низкой базе в натуральном выражении, в то время потребление в России выросло почти в два раза, в связи с увеличением производства титана. Азия, точнее Китай, будут по-прежнему демонстрировать самые высокие темпы роста спроса на магний на региональной основе до 2017 года.

Китай доминирует в глобальных поставках, но внутренняя конкуренция часто упускается из виду

В производстве первичного магния продолжает доминировать Китай, на долю которого, по оценке Roskill, приходилось 75% мирового производства в 2012 году. России и США вместе представляют собой еще 16%, далее следуют более мелкие производители - Израиль, Казахстан, Бразилия, Сербия и Украина. Малайзия и Южная Корея вышли на рынок в последние годы, хотя и в небольшом масштабе, но это и некоторые ограниченное расширение существующих операций сделали немного, чтобы ослабить растущую долю Китая. Вторичный магния, производство которого в 2012 году составило 211 тыс. тонн, поступает в основном из лома литья. Северная Америка является основным источником вторичного магния, затем следует Европа, так как эти регионы по-прежнему являются крупными потребителями продукции на основе магния.

Лидирующие позиции Китая в первичном производстве магния отражают внутренняя доступность и низкая стоимость ферросилиция и энергии (в виде угля, кокса и электроэнергии), которые являются основными компонентами энергоемкого, теплового пиджинг-процесса получения металла. Тем не менее, столкнувшись с ростом цен на энергоносители и государственным давлением с целью снижения выбросов, китайские магниевые компании вложились в оптимизацию процесса с целью снижения затрат. Хотя Китай часто рассматривается как единое целое в случае с поставками магния, во внутренней промышленности также сильно выросла конкуренция, в связи с недавним повышением доступности кокс газа, в результате перемещения внутреннего производства в провинцию Шэньси, что ограничило рост в провинциях Шаньси и Нинся, и в результате потерь в производстве в других местах.

Низкие капитальные издержки в переходе от стендовых технологических установок означают, что перемещение отечественного производства из провинции в провинцию происходит относительно просто, но приводит к значительному росту мощностей. Roskill оценивает китайские первичные мощности в размере 1,3 млн. тонн, но из них только 0,8-0,9 млн. тонн используются; остальные мощности законсервированы или неэкономичны. Эта тенденция привела к закрытию, по крайней мере, одного крупного производителя в Китае в 2012 году, а также к консолидации отрасли.

Несмотря на ценовую конкурентоспособность и избыточные мощности в Китае, новый электролитический завод в провинции Цинхай, мощностью 100 тысяч тонн, который должен открыться в ближайшее время, мог бы еще больше изменить внутренний ландшафт. Несколько компаний, использующих новые процессы или вариации из существующих электролитических и термических методов, также продолжают исследовать возможность первичного производства магния в других странах, особенно в Австралии и Канаде. Однако, пока эти проекты не смогут конкурировать с китайскими производственными издержками и быть экономически выгодными при текущих и прогнозируемых ценах на магний в 2500-3000 долл./т, Китай, похоже, будет постепенно увеличивать свою долю рынка по мере того, как спрос растет.

Цены на магний

В мире нет площадок для торговли магнием и поэтому в большинстве случаев условия контрактов согласовываются напрямую между производителями и потребителями. Тем не менее, большой объем китайского материала продается на спотовой основе торговцами и китайскими производителями на европейский, японский и внутренний рынок. Основными рыночными ценами на магний, следовательно, являются китайские внутренние и экспортные цены на металл с чистотой 99,8% Mg, и европейские цены экс-Роттердам склад. Некоторые поставки магния происходят за пределами торговли Китая с другими странами, но они образуют меньшую часть от общего открытого рынка.

Рост спроса, в частности, в Китае, привел к быстрому росту цен в четвертом квартале 2007 года и первом полугодии 2008 года. На пике своего роста в первой половине 2008 года цены выросли выше 6000 долл./т FOB Китай для слитка магния с чистотой 99,8%. В последующие годы цены с отступили на более низкие уровни, движимые сокращением потребности в связи с глобальным экономическим кризисом, хотя по-прежнему находились выше, чем до пика 2007/08 годов. Отмена 10% экспортной пошлины на китайские поставки в конце 2012 года вызвала волновой эффект как для европейских цен, так и для китайских экспортных цен, обусловив с 2013 года цены 2500-3000 долл./т FOB Китай. Из-за антидемпинговых пошлин на китайский материал, в США магний продается с премией.

Mg — Магний

МАГНИЙ (лат. Magnesium), Mg (читается «магний»), химический элемент IIА группы третьего периода периодической системы Менделеева, атомный номер 12, атомная масса 24,305. Природный магний состоит из трех стабильных нуклидов: 24 Mg (78,60% по массе), 25 Mg (10,11%) и 26 Mg (11,29%). Электронная конфигурация нейтрального атома 1s 2 2s 2 p 6 3s 2 , согласно которой магний в стабильных соединениях двухвалентен (степень окисления +2). Простое вещество магний — легкий, серебристо-белый блестящий металл.

Физические и химические свойства: металлический магний обладает гексагональной кристаллической решеткой. Температура плавления 650°C, температура кипения 1105°C, плотность 1,74 г/см 3 (магний — очень легкий металл, легче только кальций и щелочные металлы). Стандартный электродный потенциал магния Mg/Mg 2+ равен –2,37В. В ряду стандартных потенциалов он расположен за натрием перед алюминием.

Поверхность магния покрыта плотной пленкой оксида MgO, при обычных условиях надежно защищающей металл от дальнейшего разрушения. Только при нагревании металла до температуры выше примерно 600°C он загорается на воздухе. Горит магний с испусканием яркого света, по спектральному составу близкого к солнечному. Поэтому раньше фотографы при недостаточной освещенности проводили съемку в свете горящей ленты магния. При горении магния на воздухе образуется рыхлый белый порошок оксида магния MgO:

2Mg + O 2 = 2MgO.

Одновременно с оксидом образуется и нитрид магния Mg 3 N 2:

3Mg + N 2 = Mg 3 N 2 .

C холодной водой магний не реагирует (или, точнее, реагирует, но крайне медленно), а с горячей водой он вступает во взаимодействие, причем образуется рыхлый белый осадок гидроксида магния Mg(OH) 2:

Mg + 2H 2 O = Mg(OH) 2 + H 2 .

Если ленту магния поджечь и опустить в стакан с водой, то горение металла продолжается. При этом выделяющийся при взаимодействии магния с водой водород немедленно загорается на воздухе. Горение магния продолжается и в атмосфере углекислого газа:

2Mg + CO 2 = 2MgO + C.

Способность магния гореть как в воде, так и в атмосфере углекислого газа существенно усложняет тушение пожаров, при которых горят конструкции из магния или его сплавов.

Оксид магния MgO представляет собой белый рыхлый порошок, не реагирующий с водой. Раньше его называли жженой магнезией или просто магнезией. Этот оксид обладает основными свойствами, он реагирует с различными кислотами, например:

MgO + 2HNO 3 = Mg(NO 3) 2 + H 2 O.

Отвечающее этому оксиду основание Mg(OH) 2 — средней силы, но в воде практически нерастворимо. Его можно получить, например, добавляя щелочь к раствору какой-либо соли магния:

2NaOH + MgSO 4 = Mg(OH) 2 + Na 2 SO 4 .

Так как оксид магния MgO при взаимодействии с водой щелочей не образует, а основание магния Mg(OH) 2 щелочными свойствами не обладает, магний, в отличие от своих «согруппников» — кальция, стронция и бария, не относится к числу щелочноземельных металлов.

Металлический магний при комнатной температуре реагирует с галогенами, например, с бромом:

Mg + Br 2 = MgBr 2 .

При нагревании магний вступает во взаимодействие с серой, давая сульфид магния:

Если в инертной атмосфере прокаливать смесь магния и кокса, то образуется карбид магния состава Mg 2 C 3 (следует отметить, что ближайший сосед магния по группе — кальций — в аналогичных условиях образует карбид состава СаС 2). При разложении карбида магния водой образуется гомолог ацетилена — пропин С 3 Н 4:

Mg 2 C 3 + 4Н 2 О = 2Mg(OH) 2 + С 3 Н 4 .

Поэтому Mg 2 C 3 можно назвать пропиленидом магния.

В поведении магния есть черты сходства с поведением щелочного металла лития (пример диагонального сходства элементов в таблице Менделеева). Так, магний, как и литий, реагирует с азотом (реакция магния с азотом протекает при нагревании), в результате образуется нитрид магния:

3Mg + N 2 = Mg 3 N 2 .

Как и нитрид лития, нитрид магния легко разлагается водой:

Mg 3 N 2 + 6Н 2 О = 3Mg(ОН) 2 + 2NН 3 .

Сходство с литием проявляется у магния и в том, что его карбонат MgCO 3 и фосфат Mg 3 (PO 4) 2 в воде плохо растворимы, как и соответствующие соли лития.

С кальцием магний сближает то, что присутствие в воде растворимых гидрокарбонатов этих элементов обусловливает жесткость воды. Как и в случае гидрокарбоната кальция, жесткость, вызванная гидрокарбонатом магния Mg(HCO 3) 2 , — временная. При кипячении гидрокарбонат магния Mg(HCO 3) 2 разлагается и в осадок выпадает его основной карбонат — гидроксокарбонат магния (MgOH) 2 CO 3:

2Mg(HCO 3) 2 = (MgOH) 2 CO 3 + 3CO 2 + Н 2 О.

Практическое применение до сих пор имеет перхлорат магния Mg(ClO 4) 2 , энергично взаимодействующий с парами воды, хорошо осушающий воздух или другой газ, проходящий через его слой. При этом образуется прочный кристаллогидрат Mg(ClO 4) 2 ·6Н 2 О. Это вещество можно вновь обезводить, нагревая в вакууме при температуре около 300°C. За свойства осушителя перхлорат магния получил название «ангидрон».

Большое значение в органической химии имеют магнийорганические соединения, содержащие связь Mg—C. Особенно важную роль среди них играет так называемый реактив Гриньяра — соединения магния общей формулы RMgHal, где R — органический радикал, а Hal = Cl, Br или I. Эти соединения образуются в эфирных растворах при взаимодействии магния и соответствующего органического галоида RHal и используются для самых разнообразных синтезов.

История открытия: соединения магния были известны человеку с давних пор. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита. Металлический магний впервые получил в 1808 английский химик Г. Дэви. Как и в случае других активных металлов — натрия, калия, кальция, для получения металлического магния Дэви использовал электролиз. Электролизу он подвергал увлажненную смесь белой магнезии (в ее состав, судя по всему, входили оксид магния MgO и гидроксид магния Mg(OH) 2) и оксида ртути HgO. В результате Дэви получил амальгаму — сплав нового металла с ртутью. После отгонки ртути остался порошок нового металла, который Дэви назвал магнием.

Магний Дэви был довольно грязным, чистый металлический магний получен впервые в 1828 французским химиком А. Бюсси.

Нахождение в природе: магний — один из десяти наиболее распространенных элементов земной коры (8-е место). В ней содержится 2,35% магния по массе. Из-за высокой химической активности в свободном виде магний не встречается, а входит в состав множества минералов — силикатов, алюмосиликатов, карбонатов, хлоридов, сульфатов и др. Так, магний содержат широко распространенные силикаты оливин (Mg,Fe) 2 и серпентин Mg 6 (OH) 8 . Важное практическое значение имеют такие магнийсодержащие минералы, как асбест, магнезит, доломит MgCO 3 ·CaCO 3 , бишофит MgCl 2 ·6H 2 O, карналлит KCl·MgCl 2 ·6H 2 O, эпсомит MgSO 4 ·7H 2 O, каинит KCl·MgSO 4 ·3H 2 O, астраханит Na 2 SO 4 ·MgSO 4 ·4H 2 O и др. Магний содержится в морской воде (4% Mg в сухом остатке), в природных рассолах, во многих подземных водах.

Получение: обычный промышленный метод получения металлического магния — это электролиз расплава смеси безводных хлоридов магния MgCl 2 , натрия NaCl и калия KCl. В этом расплаве электрохимическому восстановлению подвергается хлорид магния:

MgCl 2 (электролиз) = Mg + Cl 2 .

Расплавленный металл периодически отбирают из электролизной ванны, а в нее добавляют новые порции магнийсодержащего сырья. Так как полученный таким способом магний содержит сравнительно много — около 0,1% примесей, при необходимости «сырой» магний подвергают дополнительной очистке. С этой целью используют электролитическое рафинирование, переплавку в вакууме с использованием специальных добавок — флюсов, которые «отнимают» примеси от магния, или перегонку (сублимацию) металла в вакууме. Чистота рафинированного магния достигает 99,999% и выше.

Разработан и другой способ получения магния — термический. В этом случае для восстановления оксида магния при высокой температуре используют кокс:

MgO + C = Mg + CO

или кремний. Применение кремния позволяет получать магний из такого сырья, как доломит CaCO 3 ·MgCO 3 , не проводя предварительного разделения магния и кальция. С участием доломита протекают реакции:

CaCO 3 ·MgCO 3 = CaO + MgO + 2CO 2 ,

2MgO + 2CaO + Si = Ca 2 SiO 4 + 2Mg.

Преимущество термического способа состоит в том, что он позволяет получать магний более высокой чистоты. Для получения магния используют не только минеральное сырье, но и морскую воду.

Применение: основная часть добываемого магния используется для получения различных легких магниевых сплавов. В состав этих сплавов, кроме магния, входят, как правило, алюминий, цинк, цирконий. Такие сплавы достаточно прочны и находят применение в самолетостроении, приборостроении и для других целей.

Высокая химическая активность металлического магния позволяет использовать его при магниетермическом получении таких металлов, как титан, цирконий, ванадий, уран и др. При этом магний реагирует с оксидом или фторидом получаемого металла, например.

Магний — элемент главной подгруппы второй группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 12. Обозначается символом Mg (лат. Magnesium). Простое вещество магний (CAS-номер: 7439-95-4) — лёгкий, ковкий металл серебристо-белого цвета.

1 элемент таблицы Менделеева В 1695 году из минеральной воды Эпсомского источника в Англии выделили соль, обладавшую горьким вкусом и слабительным действием. Аптекари называли её горькой солью, а также английской, или эпсомской солью. Минерал эпсомит имеет состав MgSO4 · 7H2O. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита.

В 1792 году Антон фон Рупрехт получил новый металл, названный им австрием, восстановлением углём из белой магнезии. Позже было установлено, что «австрий» представляет собой магний крайне низкой степени чистоты, поскольку исходное вещество было сильно загрязнёно железом.

История открытия

В 1695 году из минеральной воды Эпсомского источника в Англии выделили соль, обладавшую горьким вкусом и слабительным действием. Аптекари называли её горькой солью, а также английской, или эпсомской солью. Минерал эпсомит имеет состав MgSO4 · 7H2O. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита.
В 1792 году Антон фон Рупрехт получил новый металл, названный им австрием, восстановлением углём из белой магнезии. Позже было установлено, что «австрий» представляет собой магний крайне низкой степени чистоты, поскольку исходное вещество было сильно загрязнено железом.
Впервые был выделен в чистом виде сэром Гемфри Дэви в 1808 году дистилляцией ртути из магниевой амальгамы, которую он получил электролизом полужидкой смеси оксида магния и ртути.

Нахождение в природе

Кларк магния (масс.) — 1,95 % (19,5 кг/т). Это один из самых распространённых элементов земной коры. Большие количества магния находятся в морской воде. Главными видами нахождения магнезиального сырья являются:

морская вода — (Mg 0,12—0,13 %),
карналлит — MgCl2 . KCl . 6H2O (Mg 8,7 %),
бишофит — MgCl2 . 6H2O (Mg 11,9 %),
кизерит — MgSO4 . H2O (Mg 17,6 %),
эпсомит — MgSO4 . 7H2O (Mg 16,3 %),
каинит — KCl . MgSO4 . 3H2O (Mg 9,8 %),
магнезит — MgCO3 (Mg 28,7 %),
доломит — CaCO3·MgCO3 (Mg 13,1 %),
брусит — Mg(OH)2 (Mg 41,6 %).
Магнезиальные соли встречаются в больших количествах в солевых отложениях самосадочных озёр. Месторождения ископаемых солей карналлита осадочного происхождения известны во многих странах.

Магнезит образуется преимущественно в гидротермальных условиях и относится к среднетемпературным гидротермальным месторождениям. Доломит также является важным магниевым сырьём. Месторождения доломита широко распространены, запасы их огромны. Они ассоциируют с карбонатными толщами, и большинство из них имеет докембрийский или пермский возраст. Доломитовые залежи образуются осадочным путём, но могут возникать также при воздействии на известняки гидротермальных растворов, подземных или поверхностных вод.

ТАБЛИЦА НОРМЫ ПОТРЕБЛЕНИЯ МАГНИЯ

Пол Возраст Суточная норма потребления магния, мг/день Верхний допустимы предел, мг/день
Младенцы от 0 до 6 месяцев 30 Не определен
Младенцы от 7 до 12 месяцев 75 Не определен
Дети от 1 до 3 лет 80 145
Дети от 4 до 8 лет 130 240
Дети от 9 до 13 лет 240 590
Девушки от 14 до 18 лет 360 710
Юноши от 14 до 18 лет 410 760
Мужчины от 19 до 30 лет 400 750
Мужчины 31 год и старше 420 770
Женщины от 19 до 30 лет 310 660
Женщины 31 год и старше 320 670
Беременные женщины от 14 до 18 лет 400 750
Беременные женщины от 19 до 30 лет 350 700
Беременные женщины 31 год и старше 360 710
Кормящие грудью женщины от 14 до 18 лет 360 710
Кормящие грудью женщины от 19 до 30 лет 310 660
Кормящие грудью женщины 31 год и старше 320 670
Внешний вид простого вещества

Ковкий, серебристо белый металл

Свойства атома Название, символ, номер

Магний / Magnesium (Mg), 12

Атомная масса
(молярная масса)

[комм 1] а. е. м. (г/моль)

Электронная конфигурация Радиус атома Химические свойства Ковалентный радиус Радиус иона Электроотрицательность

1,31 (шкала Полинга)

Электродный потенциал Степени окисления Энергия ионизации
(первый электрон)

737,3 (7,64) кДж/моль (эВ)

Термодинамические свойства простого вещества Плотность (при н. у.)

1,738 г/см³

Температура плавления

650 °C (923 K)

Температура кипения

1090 °C (1363 K)

Уд. теплота плавления

9,20 кДж/моль

Уд. теплота испарения

131,8 кДж/моль

Молярная теплоёмкость

24,90 Дж/(K·моль)

Молярный объём

14,0 см³/моль

Кристаллическая решётка простого вещества Структура решётки

гексагональная

Параметры решётки

a =0,32029 нм, c =0,52000 нм

Отношение c/a Температура Дебая Прочие характеристики Теплопроводность