Как решаются примеры с корнями. Извлечение корней: методы, способы, решения

Из этой статьи вы узнаете:

  • что такое «извлечение корня»;
  • в каких случаях он извлекается;
  • принципы нахождения значения корня;
  • основные способы извлечения корня из натуральных и дробных чисел.

Что такое «извлечение корня»

Для начала введем определение «извлечение корня».

Определение 1

Извлечение корня - процесс нахождения значения корня.

При извлечении корня n -ной степени из числа a, мы находим число b , n -ная степень которого равняется a . Если мы нашли такое число b , можно утверждать, что корень извлечен.

Замечание 1

Выражения «извлечение корня» и «нахождение значения корня» равнозначны.

В каких случаях извлекается корень?

Определение 2

Корень n -ной степени можно извлечь из числа a точно в случае, если a можно представить в виде n -ной степени некоторого числа b .

Пример 1

4 = 2 × 2 , следовательно, из числа 4 можно точно извлечь квадратный корень, который равен 2

Определение 3

Когда корень n -ной степени из числа a невозможно представить в виде n -ной степени числа b , то такой корень не извлекается либо извлекается только приближенное значение корня с точностью до любого десятичного разряда.

Пример 2

2 ≈ 1 , 4142 .

Принципы нахождения значения корня и способы их извлечения

  • Использование таблицы квадратов, таблицы кубов и т.д.
  • Разложение подкоренного выражения (числа) на простые множители
  • Извлечение корня из отрицательного числа

Необходимо понять, по каким принципам находится значение корней, и каким образом они извлекаются.

Определение 4

Главный принцип нахождения значения корней - основываться на свойствах корней, в том числе на равенстве: b n n = b , которое является справедливым для любого неотрицательного числа b .

Начать следует с наиболее простого и очевидного способа: таблицы квадратов, кубов и т.д.

Когда таблицы под руками нет, вам поможет способ разложения подкоренного числа на простые множители (способ незатейливый).

Стоит уделить внимание извлечению корня из отрицательного числа, что является возможным для корней с нечетными показателями.

Изучим, как извлекать корни из дробных чисел, в том числе из смешанных чисел, обыкновенных и десятичных дробей.

И потихоньку рассмотрим способ поразрядного нахождения значения корня - наиболее сложного и многоступенчатого.

Использование таблицы квадратов, кубов и т.д.

Таблица квадратов включает в себя все числа от 0 до 99 и состоит из 2 зон: в первой зоне можно составить любое число до 99 с помощью вертикального столбца с десятками и горизонтальной строки с единицами, во второй зоне содержатся все квадраты образуемых чисел.

Таблица квадратов

Таблица квадратов единицы
0 1 2 3 4 5 6 7 8 9
десятки 0 0 1 4 9 16 25 36 49 64 81
1 100 121 144 169 196 225 256 289 324 361
2 400 441 484 529 576 625 676 729 784 841
3 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4 1600 1681 1764 1849 1936 2025 2116 2209 2304 2041
5 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

Существуют также таблицы кубов, четвертой степени и т.д., которые созданы по принципу, аналогичному таблице квадратов.

Таблица кубов

Таблица кубов единицы
0 1 2 3 4 5 6 7 8 9
десятки 0 0 1 8 27 64 125 216 343 512 729
1 1000 1 331 1 728 2 197 2 744 3 375 4 096 4 913 5 832 6 859
2 8000 9 261 10 648 12 167 13 824 15 625 17 576 19 683 21 952 24 389
3 27000 29 791 32 768 35 937 39 304 42 875 46 656 50 653 54 872 59 319
4 64000 68 921 74 088 79 507 85 184 91 125 97 336 103 823 110 592 117 649
5 125000 132 651 140 608 148 877 157 464 166 375 175 616 185 193 195 112 205 379
6 216000 226 981 238 328 250 047 262 144 274 625 287 496 300 763 314 432 328 509
7 343000 357 911 373 248 389 017 405 224 421 875 438 976 456 533 474 552 493 039
8 512000 531 441 551 368 571 787 592 704 614 125 636 056 658 503 681 472 704 969
729000 753 571 778 688 804 357 830 584 857 375 884 736 912 673 941 192 970 299

Принцип функционирования таких таблиц прост, однако их часто нет под рукой, что значительно усложняет процесс извлечение корня, поэтому необходимо владеть минимум несколькими способами извлечения корней.

Разложение подкоренного числа на простые множители

Наиболее удобный способ нахождения значения корня после таблицы квадратов и кубов.

Определение 5

Способ разложения подкоренного числа на простые множители подразумевает под собой представление числа в виде степени с необходимым показателем, что дает нам возможность получить значение корня.

Пример 3

Извлечем квадратный корень из 144 .

Разложим 144 на простые множители:

Таким образом: 144 = 2 × 2 × 2 × 2 × 3 × 3 = (2 × 2) 2 × 3 2 = (2 × 2 × 3) 2 = 12 2 . Следовательно, 144 = 12 2 = 12 .

Также при использовании свойств степени и корней можно записать преобразование немного по-другому:

144 = 2 × 2 × 2 × 2 × 3 × 3 = 2 4 × 3 2 = 2 4 × 3 2 = 2 2 × 3 = 12

144 = 12 - окончательный ответ.

Извлечение корней из дробных чисел

Запоминаем : любое дробное число должно быть записано в виде обыкновенной дроби.

Определение 6

Следуя свойству корня из частного, справедливым является следующее равенство:

p q n = p n q n . Исходя из этого равенства, необходимо воспользоваться правилом извлечения корня из дроби: корень из дроби равен от деления корня числителя на корень знаменателя.

Пример 4

Рассмотрим пример извлечения корня из десятичной дроби, поскольку извлечь корень из обыкновенной дроби можно с помощью таблицы.

Необходимо извлечь кубический корень из 474 , 552 . Первым делом, представим десятичную дробь в виде обыкновенной: 474 , 552 = 474552 / 1000 . Из этого следует: 474552 1000 3 = 474552 3 1000 3 . Затем можно приступить к процессу извлечения кубических корней в числителе и знаменателе:

474552 = 2 × 2 × 2 × 3 × 3 × 3 × 13 × 13 × 13 = (2 × 3 × 13) 3 = 78 3 и 1000 = 10 3 , то

474552 3 = 78 3 3 = 78 и 1000 3 = 10 3 3 = 10 .

Завершаем вычисления: 474552 3 1000 3 = 78 10 = 7 , 8 .

Извлечение корня из отрицательных чисел

Если знаменатель является нечетным числом, то число под знаком корня может оказаться отрицательным. Из этого следует: для отрицательного числа - a и нечетного показателя корня 2 n - 1 справедливо равенство:

A 2 × n - 1 = - a 2 × n - 1

Определение 7

Правило извлечения нечетной степени из отрицательных чисел: чтобы извлечь корень из отрицательного числа необходимо извлечь корень из противоположного ему положительного числа и поставить перед ним знак минус.

Пример 5

12 209 243 5 . Для начала необходимо преобразовать выражение, чтобы под знаком корня оказалось положительно число:

12 209 243 5 = 12 209 243 - 5 ​​​​​​

Затем следует заменить смешанное число обыкновенной дробью:

12 209 243 - 5 = 3125 243 - 5

Пользуясь правилом извлечения корней из обыкновенной дроби, извлекаем:

3125 243 - 5 = - 3125 5 243 5

Вычисляем корни в числителе и знаменателе:

3125 5 243 5 = - 5 5 5 3 5 5 = - 5 3 = - 1 2 3

Краткая запись решения:

12 209 243 5 = 12 209 243 - 5 = 3125 243 - 5 = - 3125 5 243 5 = - 5 5 5 3 5 5 = - 5 3 = - 1 2 3 .

Ответ: - 12 209 243 5 = - 1 2 3 .

Поразрядное нахождение значения корня

Бывают случаи, когда под корнем находится число, которое не получается представить в виде n - ной степени некоторого числа. Но необходимо знать значение корня с точностью до некоторого знака.

В таком случае необходимо воспользоваться алгоритмом поразрядного нахождения значения корня, с помощью которого можно получить достаточное количество значений искомого числа.

Пример 6

Как это происходит, разберем на примере извлечения квадратного корня из 5 .

Сперва необходимо найти значение разряда единиц. Для этого начнем перебирать значения 0 , 1 , 2 , . . . , 9 , вычисляя при этом 0 2 , 1 2 , . . . , 9 2 до необходимого значения, которое больше, чем подкоренное число 5 . Все это удобно представить в виде таблицы:

Значение ряда единиц равняется 2 (т а к к а к 2 2 < 5 , а 2 3 > 5) . Переходим в разряду десятых - будем возводить в квадрат числа 2 , 0 , 2 , 1 , 2 , 2 , . . . , 2 , 9 , сравнивая полученные значения с числом 5 .

Поскольку 2 , 2 2 < 5 , а 2 , 3 2 > 5 , то значение десятых равняется 2 . Переходим к нахождению значения сотых:

Таким образом, найдено значение корня из пяти - 2 , 23 . Можно находить значения корня дальше:

2 , 236 , 2 , 2360 , 2 , 23606 , 2 , 236067 , . . .

Итак, мы изучили несколько наиболее распространенных способов нахождения значения корня, воспользоваться которыми можно в любой ситуации.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Поздравляю: сегодня мы будем разбирать корни — одну из самых мозговыносящих тем 8-го класса.:)

Многие путаются в корнях не потому, что они сложные (чего там сложного-то — пара определений и ещё пара свойств), а потому что в большинстве школьных учебников корни определяются через такие дебри, что разобраться в этой писанине могут разве что сами авторы учебников. Да и то лишь с бутылкой хорошего виски.:)

Поэтому сейчас я дам самое правильное и самое грамотное определение корня — единственное, которое вам действительно следует запомнить. А уже затем объясню: зачем всё это нужно и как это применять на практике.

Но сначала запомните один важный момент, про который многие составители учебников почему-то «забывают»:

Корни бывают чётной степени (наш любимый $\sqrt{a}$, а также всякие $\sqrt{a}$ и даже $\sqrt{a}$) и нечётной степени (всякие $\sqrt{a}$, $\sqrt{a}$ и т.д.). И определение корня нечётной степени несколько отличается от чётной.

Вот в этом грёбаном «несколько отличается» скрыто, наверное, 95% всех ошибок и недопонимания, связанного с корнями. Поэтому давайте раз и навсегда разберёмся с терминологией:

Определение. Корень чётной степени n из числа $a$ — это любое неотрицательное число $b$ такое, что ${{b}^{n}}=a$. А корень нечётной степени из того же числа $a$ — это вообще любое число $b$, для которого выполняется всё то же равенство: ${{b}^{n}}=a$.

В любом случае корень обозначается вот так:

\{a}\]

Число $n$ в такой записи называется показателем корня, а число $a$ — подкоренным выражением. В частности, при $n=2$ получим наш «любимый» квадратный корень (кстати, это корень чётной степени), а при $n=3$ — кубический (степень нечётная), который тоже часто встречается в задачах и уравнениях.

Примеры. Классические примеры квадратных корней:

\[\begin{align} & \sqrt{4}=2; \\ & \sqrt{81}=9; \\ & \sqrt{256}=16. \\ \end{align}\]

Кстати, $\sqrt{0}=0$, а $\sqrt{1}=1$. Это вполне логично, поскольку ${{0}^{2}}=0$ и ${{1}^{2}}=1$.

Кубические корни тоже часто встречаются — не надо их бояться:

\[\begin{align} & \sqrt{27}=3; \\ & \sqrt{-64}=-4; \\ & \sqrt{343}=7. \\ \end{align}\]

Ну, и парочка «экзотических примеров»:

\[\begin{align} & \sqrt{81}=3; \\ & \sqrt{-32}=-2. \\ \end{align}\]

Если вы не поняли, в чём разница между чётной и нечётной степенью — перечитайте определение ещё раз. Это очень важно!

А мы тем временем рассмотрим одну неприятную особенность корней, из-за которой нам и потребовалось вводить раздельное определение для чётных и нечётных показателей.

Зачем вообще нужны корни?

Прочитав определение, многие ученики спросят: «Что курили математики, когда это придумывали?» И вправду: зачем вообще нужны все эти корни?

Чтобы ответить на этот вопрос, вернёмся на минутку в начальные классы. Вспомните: в те далёкие времена, когда деревья были зеленее, а пельмени вкуснее, основная наша забота была в том, чтобы правильно умножать числа. Ну, что-нибудь в духе «пять на пять — двадцать пять», вот это вот всё. Но ведь можно умножать числа не парами, а тройками, четвёрками и вообще целыми комплектами:

\[\begin{align} & 5\cdot 5=25; \\ & 5\cdot 5\cdot 5=125; \\ & 5\cdot 5\cdot 5\cdot 5=625; \\ & 5\cdot 5\cdot 5\cdot 5\cdot 5=3125; \\ & 5\cdot 5\cdot 5\cdot 5\cdot 5\cdot 5=15\ 625. \end{align}\]

Однако суть не в этом. Фишка в другом: математики — людишки ленивые, поэтому им было в лом записывать умножение десяти пятёрок вот так:

Поэтому они придумали степени. Почему бы вместо длинной строки не записать количество множителей в виде верхнего индекса? Типа вот такого:

Это же очень удобно! Все вычисления сокращаются в разы, и можно не тратить кучу листов пергамента блокнотиков на запись какого-нибудь 5 183 . Такую запись назвали степенью числа, у неё нашли кучу свойств, но счастье оказалось недолгим.

После грандиозной пьянки, которую организовали как раз по поводу «открытия» степеней, какой-то особо упоротый математик вдруг спросил: «А что, если нам известна степень числа, но неизвестно само число?» Вот, действительно, если нам известно, что некое число $b$, допустим, в 5-й степени даёт 243, то как нам догадаться, чему равно само число $b$?

Проблема эта оказалась гораздо более глобальной, чем может показаться на первый взгляд. Потому что выяснилось, что для большинства «готовых» степеней таких «исходных» чисел нет. Судите сами:

\[\begin{align} & {{b}^{3}}=27\Rightarrow b=3\cdot 3\cdot 3\Rightarrow b=3; \\ & {{b}^{3}}=64\Rightarrow b=4\cdot 4\cdot 4\Rightarrow b=4. \\ \end{align}\]

А, что если ${{b}^{3}}=50$? Получается, что нужно найти некое число, которое будучи трижды умноженное само на себя даст нам 50. Но что это за число? Оно явно больше 3, поскольку 3 3 = 27 < 50. С тем же успехом оно меньше 4, поскольку 4 3 = 64 > 50. Т.е. это число лежит где-то между тройкой и четвёркой, но чему оно равно — фиг поймёшь.

Именно для этого математики и придумали корни $n$-й степени. Именно для этого ввели значок радикала $\sqrt{*}$. Чтобы обозначить то самое число $b$, которое в указанной степени даст нам заранее известную величину

\[\sqrt[n]{a}=b\Rightarrow {{b}^{n}}=a\]

Не спорю: зачастую эти корни легко считаются — мы видели несколько таких примеров выше. Но всё-таки в большинстве случаев, если вы загадаете произвольное число, а затем попробуете извлечь из него корень произвольной степени, вас ждёт жестокий облом.

Да что там! Даже самый простой и всем знакомый $\sqrt{2}$ нельзя представить в привычном нам виде — как целое число или дробушка. А если вы вобьёте это число в калькулятор, то увидите вот это:

\[\sqrt{2}=1,414213562...\]

Как видите, после запятой идёт бесконечная последовательность цифр, которые не подчиняются никакой логике. Можно, конечно, округлить это число, чтобы быстро сравнить с другими числами. Например:

\[\sqrt{2}=1,4142...\approx 1,4 \lt 1,5\]

Или вот ещё пример:

\[\sqrt{3}=1,73205...\approx 1,7 \gt 1,5\]

Но все эти округления, во-первых, довольно грубые; а во-вторых, работать с примерными значениями тоже надо уметь, иначе можно словить кучу неочевидных ошибок (кстати, навык сравнения и округления в обязательном порядке проверяют на профильном ЕГЭ).

Поэтому в серьёзной математике без корней не обойтись — они являются такими же равноправными представителями множества всех действительных чисел $\mathbb{R}$, как и давно знакомые нам дроби и целые числа.

Невозможность представить корень в виде дроби вида $\frac{p}{q}$ означает, что данный корень не является рациональным числом. Такие числа называются иррациональными, и их нельзя точно представить иначе как с помощью радикала, либо других специально предназначенных для этого конструкций (логарифмов, степеней, пределов и т.д.). Но об этом — в другой раз.

Рассмотрим несколько примеров, где после всех вычислений иррациональные числа всё же останутся в ответе.

\[\begin{align} & \sqrt{2+\sqrt{27}}=\sqrt{2+3}=\sqrt{5}\approx 2,236... \\ & \sqrt{\sqrt{-32}}=\sqrt{-2}\approx -1,2599... \\ \end{align}\]

Естественно, по внешнему виду корня практически невозможно догадаться о том, какие числа будут идти после запятой. Впрочем, можно, посчитать на калькуляторе, но даже самый совершенный калькулятор дат нам лишь несколько первых цифр иррационального числа. Поэтому гораздо правильнее записать ответы в виде $\sqrt{5}$ и $\sqrt{-2}$.

Именно для этого их и придумали. Чтобы удобно записывать ответы.

Почему нужны два определения?

Внимательный читатель уже наверняка заметил, что все квадратные корни, приведённые в примерах, извлекаются из положительных чисел. Ну, в крайнем случае из нуля. А вот кубические корни невозмутимо извлекаются абсолютно из любого числа — хоть положительного, хоть отрицательного.

Почему так происходит? Взгляните на график функции $y={{x}^{2}}$:

График квадратичной функции даёт два корня: положительный и отрицательный

Попробуем с помощью этого графика посчитать $\sqrt{4}$. Для этого на графике проведена горизонтальная линия $y=4$ (отмечена красным цветом), которая пересекается с параболой в двух точках:${{x}_{1}}=2$ и ${{x}_{2}}=-2$. Это вполне логично, поскольку

С первым числом всё понятно — оно положительное, поэтому оно и есть корень:

Но что тогда делать со второй точкой? Типа у четвёрки сразу два корня? Ведь если возвести в квадрат число −2, мы тоже получим 4. Почему бы тогда не записать$\sqrt{4}=-2$? И почему учителя смотрят на подобные записи так, как будто хотят вас сожрать?:)

В том-то и беда, что если не накладывать никаких дополнительных условий, то квадратных корней у четвёрки будет два — положительный и отрицательный. И у любого положительного числа их тоже будет два. А вот у отрицательных чисел корней вообще не будет — это видно всё по тому же графику, поскольку парабола нигде не опускается ниже оси y , т.е. не принимает отрицательных значений.

Подобная проблема возникает у всех корней с чётным показателем:

  1. Строго говоря, корней с чётным показателем $n$ у каждого положительного числа будет сразу две штуки;
  2. Из отрицательных чисел корень с чётным $n$ вообще не извлекается.

Именно поэтому в определении корня чётной степени $n$ специально оговаривается, что ответ должен быть неотрицательным числом. Так мы избавляемся от неоднозначности.

Зато для нечётных $n$ такой проблемы нет. Чтобы убедиться в этом, давайте взглянем на график функции $y={{x}^{3}}$:

Кубическая парабола принимает любые значения, поэтому кубический корень извлекается из любого числа

Из этого графика можно сделать два вывода:

  1. Ветви кубической параболы, в отличие от обычной, уходят на бесконечность в обе стороны — и вверх, и вниз. Поэтому на какой бы высоте мы ни проводили горизонтальную прямую, эта прямая обязательно пересечётся с нашим графиком. Следовательно, кубический корень можно извлечь всегда, абсолютно из любого числа;
  2. Кроме того, такое пересечение всегда будет единственным, поэтому не нужно думать, какое число считать «правильным» корнем, а на какое — забить. Именно поэтому определение корней для нечётной степени проще, чем для чётной (отсутствует требование неотрицательности).

Жаль, что эти простые вещи не объясняют в большинстве учебников. Вместо этого нам начинают парить мозг всякими арифметическими корнями и их свойствами.

Да, я не спорю: что такое арифметический корень — тоже надо знать. И я подробно расскажу об этом в отдельном уроке. Сегодня мы тоже поговорим о нём, поскольку без него все размышления о корнях $n$-й кратности были бы неполными.

Но сначала надо чётко усвоить то определение, которое я дал выше. Иначе из-за обилия терминов в голове начнётся такая каша, что в итоге вообще ничего не поймёте.

А всего-то и нужно понять разницу между чётными и нечётными показателями. Поэтому ещё раз соберём всё, что действительно нужно знать о корнях:

  1. Корень чётной степени существует лишь из неотрицательного числа и сам всегда является неотрицательным числом. Для отрицательных чисел такой корень неопределён.
  2. А вот корень нечётной степени существует из любого числа и сам может быть любым числом: для положительных чисел он положителен, а для отрицательных — как намекает кэп, отрицательный.

Разве это сложно? Нет, не сложно. Понятно? Да вообще очевидно! Поэтому сейчас мы немного потренируемся с вычислениями.

Основные свойства и ограничения

У корней много странных свойств и ограничений — об этом будет отдельный урок. Поэтому сейчас мы рассмотрим лишь самую важную «фишку», которая относится лишь к корням с чётным показателем. Запишем это свойство в виде формулы:

\[\sqrt{{{x}^{2n}}}=\left| x \right|\]

Другими словами, если возвести число в чётную степень, а затем из этого извлечь корень той же степени, мы получим не исходное число, а его модуль . Это простая теорема, которая легко доказывается (достаточно отдельно рассмотреть неотрицательные $x$, а затем отдельно — отрицательные). О ней постоянно талдычат учителя, её дают в каждом школьном учебнике. Но как только дело доходит до решения иррациональных уравнений (т.е. уравнений, содержащих знак радикала), ученики дружно забывают эту формулу.

Чтобы детально разобраться в вопросе, давайте на минуту забудем все формулы и попробуем посчитать два числа напролом:

\[\sqrt{{{3}^{4}}}=?\quad \sqrt{{{\left(-3 \right)}^{4}}}=?\]

Это очень простые примеры. Первый пример решит большинство людишек, а вот на втором многие залипают. Чтобы без проблем решить любую подобную хрень, всегда учитывайте порядок действий:

  1. Сначала число возводится в четвёртую степень. Ну, это как бы несложно. Получится новое число, которое даже в таблице умножения можно найти;
  2. И вот уже из этого нового числа необходимо извлечь корень четвёртой степени. Т.е. никакого «сокращения» корней и степеней не происходит — это последовательные действия.

Раберёмся с первым выражением: $\sqrt{{{3}^{4}}}$. Очевидно, что сначала надо посчитать выражение, стоящее под корнем:

\[{{3}^{4}}=3\cdot 3\cdot 3\cdot 3=81\]

Затем извлекаем корень четвёртой степени из числа 81:

Теперь сделаем то же самое со вторым выражением. Сначала возводим число −3 в четвёртую степени, для чего потребуется умножить его само на себя 4 раза:

\[{{\left(-3 \right)}^{4}}=\left(-3 \right)\cdot \left(-3 \right)\cdot \left(-3 \right)\cdot \left(-3 \right)=81\]

Получили положительное число, поскольку общее количество минусов в произведении — 4 штуки, и они все взаимно уничтожится (ведь минус на минус даёт плюс). Дальше вновь извлекаем корень:

В принципе, эту строчку можно было не писать, поскольку и ежу понятно, что ответ получится один и тот же. Т.е. чётный корень из той же чётной степени «сжигает» минусы, и в этом смысле результат неотличим от обычного модуля:

\[\begin{align} & \sqrt{{{3}^{4}}}=\left| 3 \right|=3; \\ & \sqrt{{{\left(-3 \right)}^{4}}}=\left| -3 \right|=3. \\ \end{align}\]

Эти вычисления хорошо согласуются с определением корня чётной степени: результат всегда неотрицателен, да и под знаком радикала тоже всегда стоит неотрицательное число. В противном случае корень не определён.

Замечание по поводу порядка действий

  1. Запись $\sqrt{{{a}^{2}}}$ означает, что мы сначала возводим число $a$ в квадрат, а затем извлекаем из полученного значения квадратный корень. Следовательно, мы можем быть уверены, что под знаком корня всегда сидит неотрицательное число, поскольку ${{a}^{2}}\ge 0$ в любом случае;
  2. А вот запись ${{\left(\sqrt{a} \right)}^{2}}$, напротив, означает, что мы сначала извлекаем корень из некого числа $a$ и лишь затем возводим результат в квадрат. Поэтому число $a$ ни в коем случае не может быть отрицательным — это обязательное требование, заложенное в определение.

Таким образом, ни в коем случае нельзя бездумно сокращать корни и степени, тем самым якобы «упрощая» исходное выражение. Потому что если под корнем стоит отрицательное число, а его показатель является чётным, мы получим кучу проблем.

Впрочем, все эти проблемы актуальны лишь для чётных показателей.

Вынесение минуса из-под знака корня

Естественно, у корней с нечётными показателями тоже есть своя фишка, которой в принципе не бывает у чётных. А именно:

\[\sqrt{-a}=-\sqrt{a}\]

Короче говоря, можно выносить минус из-под знака корней нечётной степени. Это очень полезное свойство, которое позволяет «вышвырнуть» все минусы наружу:

\[\begin{align} & \sqrt{-8}=-\sqrt{8}=-2; \\ & \sqrt{-27}\cdot \sqrt{-32}=-\sqrt{27}\cdot \left(-\sqrt{32} \right)= \\ & =\sqrt{27}\cdot \sqrt{32}= \\ & =3\cdot 2=6. \end{align}\]

Это простое свойство значительно упрощает многие вычисления. Теперь не нужно переживать: вдруг под корнем затесалось отрицательное выражение, а степень у корня оказалась чётной? Достаточно лишь «вышвырнуть» все минусы за пределы корней, после чего их можно будет умножать друг на друга, делить и вообще делать многие подозрительные вещи, которые в случае с «классическими» корнями гарантированно приведут нас к ошибке.

И вот тут на сцену выходит ещё одно определение — то самое, с которого в большинстве школ и начинают изучение иррациональных выражений. И без которого наши рассуждения были бы неполными. Встречайте!

Арифметический корень

Давайте предположим на минутку, что под знаком корня могут находиться лишь положительные числа или в крайнем случае ноль. Забьём на чётные/нечётные показатели, забьём на все определения, приведённые выше — будем работать только с неотрицательными числами. Что тогда?

А тогда мы получим арифметический корень — он частично пересекается с нашими «стандартными» определениями, но всё же отличается от них.

Определение. Арифметическим корнем $n$-й степени из неотрицательного числа $a$ называется такое неотрицательное число $b$, что ${{b}^{n}}=a$.

Как видим, нас больше не интересует чётность. Взамен неё появилось новое ограничение: подкоренное выражение теперь всегда неотрицательно, да и сам корень тоже неотрицателен.

Чтобы лучше понять, чем арифметический корень отличается от обычного, взгляните на уже знакомые нам графики квадратной и кубической параболы:

Область поиска арифметического корня — неотрицательные числа

Как видите, отныне нас интересуют лишь те куски графиков, которые расположены в первой координатной четверти — там, где координаты $x$ и $y$ положительны (или хотя бы ноль). Больше не нужно смотреть на показатель, чтобы понять: имеем мы право ставить под корень отрицательное число или нет. Потому что отрицательные числа больше в принципе не рассматриваются.

Возможно, вы спросите: «Ну и зачем нам такое кастрированное определение?» Или: «Почему нельзя обойтись стандартным определением, данным выше?»

Что ж, приведу всего одно свойство, из-за которого новое определение становится целесообразным. Например, правило возведения в степень:

\[\sqrt[n]{a}=\sqrt{{{a}^{k}}}\]

Обратите внимание: мы можем возвести подкоренное выражение в любую степень и одновременно умножить на эту же степень показатель корня — и в результате получится то же самое число! Вот примеры:

\[\begin{align} & \sqrt{5}=\sqrt{{{5}^{2}}}=\sqrt{25} \\ & \sqrt{2}=\sqrt{{{2}^{4}}}=\sqrt{16} \\ \end{align}\]

Ну и что в этом такого? Почему мы не могли сделать это раньше? А вот почему. Рассмотрим простое выражение: $\sqrt{-2}$ — это число вполне нормальное в нашем классическом понимании, но абсолютно недопустимо с точки зрения арифметического корня. Попробуем преобразовать его:

$\begin{align} & \sqrt{-2}=-\sqrt{2}=-\sqrt{{{2}^{2}}}=-\sqrt{4} \lt 0; \\ & \sqrt{-2}=\sqrt{{{\left(-2 \right)}^{2}}}=\sqrt{4} \gt 0. \\ \end{align}$

Как видите, в первом случае мы вынесли минус из-под радикала (имеем полное право, т.к. показатель нечётный), а во втором — воспользовались указанной выше формулой. Т.е. с точки зрения математики всё сделано по правилам.

WTF?! Как одно и то же число может быть и положительным, и отрицательным? Никак. Просто формула возведения в степень, которая прекрасно работает для положительных чисел и нуля, начинает выдавать полную ересь в случае с отрицательными числами.

Вот для того, чтобы избавиться от подобной неоднозначности, и придумали арифметические корни. Им посвящён отдельный большой урок, где мы подробно рассматриваем все их свойства. Так что сейчас не будем на них останавливаться — урок и так получился слишком затянутым.

Алгебраический корень: для тех, кто хочет знать больше

Долго думал: выносить эту тему в отдельный параграф или нет. В итоге решил оставить здесь. Данный материал предназначен для тех, кто хочет понять корни ещё лучше — уже не на среднем «школьном» уровне, а на приближенном к олимпиадному.

Так вот: помимо «классического» определения корня $n$-й степени из числа и связанного с ним разделения на чётные и нечётные показатели есть более «взрослое» определение, которое вообще не зависит от чётности и прочих тонкостей. Это называется алгебраическим корнем.

Определение. Алгебраический корень $n$-й степени из числа любого $a$ — это множество всех чисел $b$ таких, что ${{b}^{n}}=a$. Для таких корней нет устоявшегося обозначения, поэтому просто поставим чёрточку сверху:

\[\overline{\sqrt[n]{a}}=\left\{ b\left| b\in \mathbb{R};{{b}^{n}}=a \right. \right\}\]

Принципиальное отличие от стандартного определения, приведённого в начале урока, состоит в том, что алгебраический корень — это не конкретное число, а множество. А поскольку мы работаем с действительными числами, это множество бывает лишь трёх типов:

  1. Пустое множество. Возникает в случае, когда требуется найти алгебраический корень чётной степени из отрицательного числа;
  2. Множество, состоящее из одного-единственного элемента. Все корни нечётных степеней, а также корни чётных степеней из нуля попадают в эту категорию;
  3. Наконец, множество может включать два числа — те самые ${{x}_{1}}$ и ${{x}_{2}}=-{{x}_{1}}$, которое мы видели на графике квадратичной функции. Соответственно, такой расклад возможен лишь при извлечении корня чётной степени из положительного числа.

Последний случай заслуживает более подробного рассмотрения. Посчитаем парочку примеров, чтобы понять разницу.

Пример. Вычислите выражения:

\[\overline{\sqrt{4}};\quad \overline{\sqrt{-27}};\quad \overline{\sqrt{-16}}.\]

Решение. С первым выражением всё просто:

\[\overline{\sqrt{4}}=\left\{ 2;-2 \right\}\]

Именно два числа входят в состав множества. Потому что каждое из них в квадрате даёт четвёрку.

\[\overline{\sqrt{-27}}=\left\{ -3 \right\}\]

Тут мы видим множество, состоящее лишь из одного числа. Это вполне логично, поскольку показатель корня — нечётный.

Наконец, последнее выражение:

\[\overline{\sqrt{-16}}=\varnothing \]

Получили пустое множество. Потому что нет ни одного действительного числа, которое при возведении в четвёртую (т.е. чётную!) степень даст нам отрицательное число −16.

Финальное замечание. Обратите внимание: я не случайно везде отмечал, что мы работаем с действительными числами. Потому что есть ещё комплексные числа — там вполне можно посчитать и $\sqrt{-16}$, и многие другие странные вещи.

Однако в современном школьном курсе математики комплексные числа почти не встречаются. Их вычеркнули из большинства учебников, поскольку наши чиновники считают эту тему «слишком сложной для понимания».

На этом всё. В следующем уроке мы рассмотрим все ключевые свойства корней и научимся, наконец, упрощать иррациональные выражения.:)

Взглянул еще раз на табличку… И, поехали!

Начнем с простенького:

Минуууточку. это, а это значит, что мы можем записать вот так:

Усвоил? Вот тебе следующий:

Корни из получившихся чисел ровно не извлекаются? Не беда - вот тебе такие примеры:

А что, если множителей не два, а больше? То же самое! Формула умножения корней работает с любым количеством множителей:

Теперь полностью самостоятельно:

Ответы: Молодец! Согласись, все очень легко, главное знать таблицу умножения!

Деление корней

С умножением корней разобрались, теперь приступим к свойству деления.

Напомню, что формула в общем виде выглядит так:

А значит это, что корень из частного равен частному корней.

Ну что, давай разбираться на примерах:

Вот и вся наука. А вот такой пример:

Все не так гладко, как в первом примере, но, как видишь, ничего сложного нет.

А что, если попадется такое выражение:

Надо просто применить формулу в обратном направлении:

А вот такой примерчик:

Еще ты можешь встретить такое выражение:

Все то же самое, только здесь надо вспомнить, как переводить дроби (если не помнишь, загляни в тему и возвращайся!). Вспомнил? Теперь решаем!

Уверена, что ты со всем, всем справился, теперь попробуем возводить корни в степени.

Возведение в степень

А что же будет, если квадратный корень возвести в квадрат? Все просто, вспомним смысл квадратного корня из числа - это число, квадратный корень которого равен.

Так вот, если мы возводим число, квадратный корень которого равен, в квадрат, то что получаем?

Ну, конечно, !

Рассмотрим на примерах:

Все просто, правда? А если корень будет в другой степени? Ничего страшного!

Придерживайся той же логики и помни свойства и возможные действия со степенями.

Почитай теорию по теме « » и тебе все станет предельно ясно.

Вот, к примеру, такое выражение:

В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:

С этим вроде все ясно, а как извлечь корень из числа в степени? Вот, к примеру, такое:

Довольно просто, правда? А если степень больше двух? Следуем той же логике, используя свойства степеней:

Ну как, все понятно? Тогда реши самостоятельно примеры:

А вот и ответы:

Внесение под знак корня

Что мы только не научились делать с корнями! Осталось только потренироваться вносить число под знак корня!

Это совсем легко!

Допустим, у нас записано число

Что мы можем с ним сделать? Ну конечно, спрятать тройку под корнем, помня при этом, что тройка - корень квадратный из!

Зачем нам это нужно? Да просто, чтобы расширить наши возможности при решении примеров:

Как тебе такое свойство корней? Существенно упрощает жизнь? По мне, так точно! Только надо помнить, что вносить под знак квадратного корня мы можем только положительные числа.

Реши самостоятельно вот этот пример -
Справился? Давай смотреть, что у тебя должно получиться:

Молодец! У тебя получилось внести число под знак корня! Перейдем к не менее важному - рассмотрим, как сравнивать числа, содержащие квадратный корень!

Сравнение корней

Зачем нам учиться сравнивать числа, содержащие квадратный корень?

Очень просто. Часто, в больших и длиииинных выражениях, встречающихся на экзамене, мы получаем иррациональный ответ (помнишь, что это такое? Мы с тобой сегодня об этом уже говорили!)

Полученные ответы нам необходимо расположить на координатной прямой, например, чтобы определить, какой интервал подходит для решения уравнения. И вот здесь возникает загвоздка: калькулятора на экзамене нет, а без него как представить какое число больше, а какое меньше? То-то и оно!

Например, определи, что больше: или?

Сходу и не скажешь. Ну что, воспользуемся разобранным свойством внесения числа под знак корня?

Тогда вперед:

Ну и, очевидно, что чем больше число под знаком корня, тем больше сам корень!

Т.е. если, значит, .

Отсюда твердо делаем вывод, что. И никто не убедит нас в обратном!

Извлечение корней из больших чисел

До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!

Можно было пойти по иному пути и разложить на другие множители:

Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.

Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:

Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:

А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):

Разве это конец? Не останавливаемся на полпути!

Вот и все, не так все и страшно, правда?

Получилось? Молодец, все верно!

А теперь попробуй вот такой пример решить:

А пример-то - крепкий орешек, так сходу и не разберешься, как к нему подступиться. Но нам он, конечно, по зубам.

Ну что, начнем раскладывать на множители? Сразу заметим, что можно поделить число на (вспоминаем признаки делимости):

А теперь, попробуй сам (опять же, без калькулятора!):

Ну что, получилось? Молодец, все верно!

Подведем итоги

  1. Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа называется такое неотрицательное число, квадрат которого равен.
    .
  2. Если мы просто извлекаем квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.
  3. Свойства арифметического корня:
  4. При сравнении квадратных корней необходимо помнить, что чем больше число под знаком корня, тем больше сам корень.

Как тебе квадратный корень? Все понятно?

Мы постарались объяснить тебе без воды все что нужно знать на экзамене про квадратный корень.

Теперь твоя очередь. Напиши нам сложная это для тебя тема или нет.

Узнал ты что-то новое или все было и так ясно.

Пиши в комментариях и удачи на экзаменах!

Деление квадратных корней приводит к упрощению дроби. Наличие квадратных корней немного усложняет процесс решения, но некоторые правила позволяют работать с дробями относительно легко. Главное помнить, что множители делятся на множители, а подкоренные выражения на подкоренные выражения. Также квадратный корень может стоять в знаменателе.

Шаги

Деление подкоренных выражений

    Запишите дробь. Если выражение представлено не в виде дроби, перепишите его в таком виде. Так легче следовать процессу деления квадратных корней. Помните, что горизонтальная черта представляет собой знак деления.

    Используйте один знак корня. Если и в числителе, и в знаменателе дроби находятся квадратные корни, запишите их подкоренные выражения под одним знаком корня, чтобы упростить процесс решения. Подкоренное выражение – это выражение (или просто число), которое находится под знаком корня.

    Разделите подкоренные выражение. Разделите одно число на другое (как обычно), а результат запишите под знаком корня.

    Упростите подкоренное выражение (если нужно). Если подкоренное выражение или один из его множителей является полным квадратом, упростите такое выражение. Полный квадрат – это число, которое является квадратом некоторого целого числа. Например, 25 – это полный квадрат, потому что 5 × 5 = 25 {\displaystyle 5\times 5=25} .

    Разложение подкоренного выражения на множители

    1. Запишите дробь. Если выражение представлено не в виде дроби, перепишите его в таком виде. Так легче следовать процессу деления квадратных корней, особенно при разложении подкоренного выражения на множители. Помните, что горизонтальная черта представляет собой знак деления.

      Разложите на множители каждое подкоренное выражение. Число, стоящее под знаком корня, раскладывается на множители как любое целое число. Множители запишите под знаком корня.

      Упростите числитель и знаменатель дроби. Для этого из под знака корня вынесите множители, которые представляют собой полные квадраты. Полный квадрат – это число, которое является квадратом некоторого целого числа. Множитель подкоренного выражения превратится в множитель перед знаком корня.

      Избавьтесь от корня в знаменателе (рационализируйте знаменатель). В математике не принято оставлять корень в знаменателе. Если в знаменателе дроби есть квадратный корень, избавьтесь от него. Для этого умножьте и числитель, и знаменатель на квадратный корень, от которого нужно избавиться.

      Упростите полученное выражение (если нужно). Иногда в числителе и знаменателе дроби находятся числа, которые можно упростить (сократить). Упростите целые числа, стоящие в числителе и знаменателе, как упрощаете любую дробь.

    Деление квадратных корней с множителями

      Упростите множители. Множитель – это число, которое стоит перед знаком корня. Чтобы упростить множители, разделите или сократите их (подкоренные выражения не трогайте).

      Упростите квадратные корни. Если числитель делится на знаменатель нацело, сделайте это; в противном случае упростите подкоренное выражение как любое другое выражение.

      Умножьте упрощенные множители на упрощенные корни. Помните, что лучше не оставлять корень в знаменателе, поэтому умножьте на этот корень и числитель, и знаменатель дроби.

      Если нужно, избавьтесь от корня в знаменателе (рационализируйте знаменатель). В математике не принято оставлять корень в знаменателе. Поэтому умножьте и числитель, и знаменатель на квадратный корень, от которого нужно избавиться.

Корнем n степени из числа называют такое число, которое при возведении в эту степень даст то число, из которого извлекается корень. Почаще каждого, действия производятся с корнями квадратными, которые соответствуют 2 степени. При извлечении корня зачастую нереально обнаружить его очевидно, а итогом является число, которое нереально представить в виде естественной дроби (трансцендентное). Но применяя некоторые приемы, дозволено гораздо упростить решение примеров с корнями.

Вам понадобится

  • – представление корня из числа;
  • – действия со степенями;
  • – формулы сокращенного умножения;
  • – калькулятор.

Инструкция

1. Если не требуется безусловная точность, при решении примеров с корнями воспользуйтесь калькулятором. Дабы извлечь из числа квадратный корень, наберите его на клавиатуре, и примитивно нажмите соответствующую кнопку, на которой изображен знак корня. Как водится, на калькуляторах берется корень квадратный. Но для вычисления корней высших степеней, воспользуйтесь функцией возведения числа в степень (на инженерном калькуляторе).

2. Для извлечения квадратного корня возведите число в степень 1/2, кубического корня в 1/3 и так дальше. При этом неукоснительно рассматривайте, что при извлечении корней четных степеней, число должно быть позитивным, напротив калькулятор примитивно не выдаст результат. Это связанно с тем, что при возведении в четную степень всякое число будет позитивным, скажем, (-2)^4=(-2)? (-2)? (-2)? (-2)=16. Для извлечения квадратного корня нацело, когда это допустимо, воспользуйтесь таблицей квадратов естественных чисел.

3. Если же рядом нет калькулятора, либо требуется безусловная точность в расчетах, используйте свойства корней, а также разные формулы для облегчения выражений. Из многих чисел дозволено извлечь корень отчасти. Для этого воспользуйтесь свойством, что корень из произведения 2-х чисел равен произведению корней из этих чисел?m?n=?m??n.

4. Пример. Вычислите значение выражения (?80-?45)/ ?5. Прямое вычисление ничего не даст, от того что нацело не извлекается ни один корень. Преобразуйте выражение (?16?5-?9?5)/ ?5=(?16??5-?9??5)/ ?5=?5?(?16-?9)/ ?5. Произведите сокращение числителя и знаменателя на?5, получите (?16-?9)=4-3=1.

5. Если подкоренное выражение либо сам корень построены в степень, то при извлечении корня воспользуйтесь тем свойством, что показатель степени подкоренного выражения дозволено поделить на степень корня. Если деление производится нацело, число вносится из-под корня. Скажем, ?5^4=5?=25. Пример. Вычислить значение выражения (?3+?5)?(?3-?5). Примените формулу разности квадратов и получите (?3)?-(?5)?=3-5=-2.

Обычная дробь – число своенравное. Изредка доводится помучиться, дабы обнаружить решение задачи с дробью и представить его в надлежащем виде. Обучившись решать примеры с дробью , вы легко совладаете с этой неприятной вещью.

Инструкция

1. Разглядите сложение и вычитание дробей. К примеру, 5/2+10/5. Приведите обе дроби к всеобщему знаменателю. Для этого обнаружьте то число, которое дозволено поделить без остатка на знаменатель и первой, и 2-й дроби. В нашем случае это число 10. Преобразуйте вышеуказанные дроби, получается 25/10+20/10.Сейчас сложите между собой числители, а знаменатель оставьте непоколебимым. Получается 45/10.Дозволено сократить полученную дробь, то есть поделить числитель и знаменатель на одно и то же число. Получается 9/2.Выделите целую часть. Обнаружьте наивысшее число, которое дозволено поделить без остатка на знаменатель. Это число 8. Поделите его на знаменатель – это и будет целая часть. Выходит, в итоге получается 4 1/2.Произведите схожие действия при вычитании дробей.

2. Разглядите умножение дробей. Тут все примитивно. Перемножьте между собой числители и знаменатели. К примеру, 2/5 умножить на 4/2 получается 8/10. Сократите дробь, получается 4/5.

3. Разглядите деление дробей. При выполнении этого действия опрокиньте одну из дробей, а после этого перемножьте числители и знаменатели. Скажем, 2/5 поделить на 4/2 – получается 2/5 умножить на 2/4 – получается 4/20. Сократите дробь, получается 1/5.

Видео по теме