Начальная фаза колебаний в чем измеряется. Основные формулы по физике - колебания и волны

Волны имеют вид

Уравнения плоской монохроматической электромагнитной

Мгновенные значения в любой точке связаны соотношением

Колеблются в одинаковых фазах, а их

Плоскости, перпендикулярной вектору скорости распростра-

Магнитного полей взаимно перпендикулярны и лежат в

Электромагнитные волны являются поперечными,

Средах определяется формулой

Фазовая скорость электромагнитных волн в различных

Волну.

Пространстве процесс и представляет собой электромагнитную

Точке к другой. Этот периодический во времени и

Распространяющихся в окружающем пространстве от одной

Взаимных превращений электрического и магнитного полей,

Электромагнитное поле, то возникает последовательность

Возбуждать с помощью колеблющихся зарядов переменное

Уравнений Максвелла для электромагнитного поля. Если

Существование электромагнитных волн вытекает из

Электромагнитные волны

Щими, будет слабым. Таким образом, осуществляется, например,

Напряжение, создаваемое на конденсаторе другими составляю-

Превышающее значение данной составляющей, в то время как

Идальных напряжений, нужной составляющей. Настроив

Сложного напряжения, равного сумме нескольких синусо-

Явление резонанса используют для выделения из

Равна величине обратной добротности контура, т. е.

Относительная ширина резонансной кривой

Добротность контура определяет остроту резонансных

Активному сопротивлению контура.

Таким образом, добротность обратно пропорциональна

С рез U

Конденсаторе может превышать приложенное напряжение, т.е.

Резонансные свойства контура характеризует доброт-

Установившийся ток в цепи с конденсатором течь не может.

Iрез LC

Совпадает с собственной частотой контура

Следовательно, резонансная частота для силы тока

Рис. 1.22

R1 < R2 < R3

  . (1.96)

При ω →0, I = 0, так как при постоянном напряжении

ность Q, которая показывает, во сколько раз напряжение на

 (1.97)

При малых затуханиях ω рез ω0 и

Q  1 (1.98)

кривых. На рис. 1.23 изображена одна из резонансных кривых

для силы тока в контуре. Частоты ω1 и ω2 соответствуют току

max I I 2 .

 

контур (посредством изменения R и C ) на требуемую частоту

, можно получить на конденсаторе напряжение в Q раз



настройка радиоприёмника на нужную длину волны.

    1 0 2

m max I

Рис. 1.7

Рис.1.23

 , (1.100)

 - скорость электромагнитных волн в вакууме.

поскольку векторы E

и H

напряжённости электрического и

нения волны, образуя правовинтовую систему (рис.1.24). При

этом векторы E

и Н

0 0   E  Н. (1.101)

cos() m Е  Е t  kx  , (1.102)

cos() m H  H t  kx  , (1.103)

где ω- частота волны, k = ω/υ = 2π/λ – волновое число, α-

Рис.1.24

Электромагнитные волны переносят энергию. Объёмная

Фаза колебаний (φ) характеризует гармонические колебания.
Выражается фаза в угловых единицах - радианах.

При заданной амплитуде колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса: φ = ω 0 t .

Фаза колебаний определяет при заданной амплитуде состояние колебательной системы (значение координаты, скорости и ускоренияв) любой момент времени.

Колебания с одинаковыми амплитудами и частотами могут различаться фазами.

Отношение указывает, сколько периодов прошло от момента начала колебаний.

График зависимости координаты колеблющейся точки от фазы




Гармонические колебания можно представить как с помощью функции синуса, так и косинуса, т.к.
синус отличается от косинуса сдвигом аргумента на .



Поэтому вместо формулы

х = х m cos ω 0 t


можно для описания гармонических колебаний использовать формулу



Но при этом начальная фаза , т. е. значение фазы в момент времени t = 0, равна не нулю, а .
В разных ситуациях удобно использовать синус или косинус.

Какой формулой пользоваться при расчетах?


1. Если в начале колебаний выводят маятник из положения равновесия, то удобнее пользоваться формулой с применением косинуса.
2. Если координата тела в начальный момент была бы равна нулю, то удобнее пользоваться формулой с применением синуса х = х m sin ω 0 t , т.к. при этом начальная фаза равна нулю.
3. Если в начальный момент времени (при t - 0) фаза колебаний равна φ, то уравнение колебаний можно записать в виде х = х m sin (ω 0 t + φ) .


Сдвиг фаз


Колебания, описываемые формулами через синус и косинус, отличаются друг от друга только фазами.
Разность фаз (или сдвиг фаз) этих колебаний составляет .
Графики зависимости координат от времени для двух гармонических колебаний, сдвинутых по фазе на :
где
график 1 - колебания, совершающиеся по синусоидальному закону,
график 2 - колебания, совершающиеся по закону косинуса

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

>> Фаза колебаний

§ 23 ФАЗА КОЛЕБАНИЙ

Введем еще одну величину, характеризующую гармонические колебания , - фазу колебаний.

При заданной амплитуде колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса :

Величину , стоящую под знаком функции косинуса или синуса, называют фазой колебаний, описываемой этой функцией. Выражается фаза в угловых единицах радианах.

Фаза определяет не только значение координаты, но и значение других физических величин, например скорости и ускорения, изменяющихся также по гармоническому закону. Поэтому можно сказать, что фаза определяет при заданной амплитуде состояние колебательной системы в любой момент времени. В этом состоит значение понятия фазы.

Колебания с одинаковыми амплитудами и частотами могут различаться фазами.

Отношение указывает, сколько периодов прошло от момента начала колебаний. Любому значению времени t, выраженному в числе периодов Т, соответствует значение фазы , выраженное в радианах. Так, по прошествии времени t = (четверти периода) , по прошествии половины периода = , по прошествии целого периода = 2 и т. д.

Можно изобразить на графике зависимость координаты колеблющейся точки не от времени, а от фазы. На рисунке 3.7 показана та же косинусоида, что и на рисунке 3.6, но на горизонтальной оси отложены вместо времени различные значения фазы .

Представление гармонических колебаний с помощью косинуса и синуса. Вы уже знаете, что при гармонических колебаниях координата тела изменяется со временем по закону косинуса или синуса. После введения понятия фазы остановимся на этом подробнее.

Синус отличается от косинуса сдвигом аргумента на , что соответствует, как видно из уравнения (3.21), промежутку времени, равному четверти периода:

Но при этом начальная фаза, т. е. значение фазы в момент времени t = 0, равна не нулю, а .

Обычно колебания тела, прикрепленного к пружине, или колебания маятника мы возбуждаем, выводя тело маятника из положения равновесия и затем отпуская его. Смещение от гихпожения равновесия максимально в начальной момент. Поэтому для описания колебаний удобнее пользоваться формулой (3.14) с применением косинуса, чем формулой (3.23) с применением синуса.

Но если бы мы возбудили колебания покоящегося тела кратковременным толчком, то координата тела в начальный момент была бы равна нулю, и изменения координаты со временем было бы удобнее описывать с помощью синуса, т. е. формулой

x = x m sin t (3.24)

так как при этом начальная фаза равна нулю.

Если в начальный момент времени (при t = 0) фаза колебаний равна , то уравнение колебаний можно записать в виде

x = x m sin(t + )

Сдвиг фаз. Колебания, описываемые формулами (3.23) и (3.24), отличаются друг от друга только фазами. Разность фаз, или, как часто говорят, сдвиг фаз, этих колебаний составляет . На рисунке 3.8 показаны графики зависимости координат от времени колебаний, сдвинутых по фазе на . График 1 соответствует колебаниям, совершающимся по синусоидальному закону: x = x m sin t а график 2 - колебаниям, совершающимся по закону косинуса:

Для определения разности фаз двух колебаний надо в обоих случаях колеблющуюся величину выразить через одну и ту же тригонометрическую функцию - косинус или синус.

1. Какие колебания называют гармоническими!
2. Как связаны ускорение и координата при гармонических колебаниях!

3. Как связаны циклическая частота колебаний и период колебаний!
4. Почему частота колебаний тела, прикрепленного к пружине, зависит от его массы, а частота колебаний математического маятника от массы не зависит!
5. Каковы амплитуды и периоды трех различных гармонических колебаний, графики которых представлены на рисунках 3.8, 3.9!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки