Модель идеального газа предполагает что молекулы. Классический идеальный газ

Часто встречающийся в физике идеальный газ является определенной моделью вещества, которая вводится для объяснения простейших свойств некоторых реальных физических систем (реального газа, электронов в металле и др.).

Идеальный газ представляют как систему свободных невзаимодействующих частиц, находящихся в непрерывном хаотическом движении. Взаимодействие частиц идеального газа проявляется только в их упругих столкновениях.

Частицы идеального газа принимают за твердые шарики, размер которых намного меньше среднего расстояния между ними. Промежуток времени между столкновениями при этом оказывается много больше, чем время самих столкновений. Следовательно, большую часть времени частицы движутся в газе равномерно и прямолинейно.

Благодаря беспорядочному движению частицы идеального газа очень часто сталкиваются друг с другом. Эти столкновения частиц между собой приводят к ряду интересных следствий.

Во-первых, разлетаясь после столкновений в разные стороны, частицы из выделенной группы будут постепенно рассеиваться в пространстве, занимая в конце концов бесконечно большой объем. Поэтому в большинстве" случаев идеальный газ рассматривают внутри некоторого объема, т. е. ограниченный стенками сосуда. Частицы, встречая

на своем пути стенки сосуда будут по законам упругого удара отражаться от них, передавая стенке определенное количество движения (импульс силы). Следствием этого является давление, оказываемое газом на стенку.

Во-вторых, столкновения частиц газа между собой приводят к тому, что они непрерывно обмениваются энергией, изменяют свои скорости и координаты внутри объема. Благодаря Этому в газе при постоянных внешних параметрах устанавливается равновесное состояние, которому соответствует определенное распределение частиц в пространстве, по направлениям движения и по скоростям. Любые отклонения от такого равновесного состояния сглаживаются благодаря непрерывному хаотическому движению и столкновениям частиц. За сравнительно короткое время (время релаксации) газ снова приходит в равновесное состояние. Рассматривая газ, при постоянных внешних параметрах, за промежутки времени, большие времени релаксации, мы можем считать его состояние равновесным. Некоторые же вопросы, связанные с неравновесными процессами, будут рассмотрены в IV главе.

Если идеальный газ находится в равновесном состоянии при отсутствии внешних сил, то его частицы заполняют весь объем с постоянной плотностью. Число частиц, заключенных в некотором интересующем нас объеме V, буяет определяться по формуле

где - число частиц в единице объема, равное отношению всего числа частиц ко всему занятому газом объему:

Столкновения частиц приводят не только к установлению в газе одинаковой плотности, но и к равномерному распределению в пространстве направлений движения частиц. Сколько частиц движется в одном направлении, столько же в среднем движется и в любом Другом, в том числе и противоположном направлении. В результате такой равноправности направлений движения давление в идеальном газе оказывается изотропным.

При равновесии в газе устанавливается также и определенное распределение частиц по скоростям. При этом средние скорости и число частиц, движущихся в разных направлениях, оказываются одинаковыми, о чем свидетельствует отсутствие направленного потока газа при равновесии.

Для рассматриваемой модели идеального газа легко найти зависимость между давлением и объемом.

Пусть идеальный газ находится в сосуде, имеющем форму шара с радиусом . В этом случае частиц, находящихся в объеме оказывают давление на поверхность

Рис. 8. К выводу закона Бойля - Мариотта по М. В. Ломоносову

Затем сожмем это количество газа так, чтобы он занимал объем шара с вдвое меньшим радиусом т. е. . Если скорости движения частиц останутся прежними, то те же удары частиц будут теперь приходиться на вчетверо меньшую поверхность вследствие чего давление должно возрасти в 4 раза. С другой стороны, из-за уменьшения объема средний путь частицы между столкновениями будет вдвое меньше, что приведет при той же скорости движения молекул к увеличению вдвое числа столкновений в единицу времени, т. е. и со стенкой частицы будут сталкиваться вдвое чаще. Таким образом, при уменьшении объема идеального газа в 8 раз давление должно возрасти также в 8 раз. Это и есть закон Бойля - Мариотта:

Приведенный здесь вывод этого закона был еще в 1745 г. предложен Ломоносовым.

Рассмотренная модель идеального газа при определенных условиях объясняет многие свойства реального газа, т. е. простейшего газообразного состояния вещества.

Существует следующий критерий применимости модели идеального газа к реальному газу. Если поведение реального газа удовлетворяет закону Бойля - Мариотта, то газ можно рассматривать как идеальный. Например, воздух при нормальных условиях можно рассматривать как идеальный газ. Поэтому дальнейшие выводы, которые будут получены на основании свойств модели идеального газа, можно распространять и на реальные газы. Вместо частиц идеального газа далее будем рассматривать молекулы реального газа.

Наиболее простой физической моделью газовой термодинамической системы является идеальный газ. Существо этой модели в следующем.

  • 1. Молекулы газа представляются малыми частицами (материальными точками), суммарный объем которых пренебрежимо мал по сравнению с объемом, который занимает газ.
  • 2. Предполагается, что до столкновения молекулы между собой не взаимодействуют (т.е. не обмениваются энергией). Иными словами, потенциальная кривая для модели идеального газа имеет вид, приведенный на рис. 4.2, а. Если считать, что молекулы - «несжимаемые шарики» с радиусом г 0 , то потенциальная энергия их взаимодействия равна нулю при расстояниях г между их центрами, больших, чем 2г 0 , и бесконечно велика при г (в действительности для реальных молекул под их радиусом следует понимать не радиус молекулы-шарика, а некоторый радиус (г , г 2) эффективного взаимодействия между молекулами, определяемый их свойствами и видом потенциальной кривой взаимодействия и кинетической энергией сталкивающихся частиц, зависящей от температуры (см. рис. 4.2, б)).
  • 3. Считается, что молекулы при столкновении обмениваются энергиями по законам абсолютно упругого соударения (см. подраздел 1.4.5).

Рис. 4.2. Потенциальные кривые U(r) (г- радиус взаимодействия) для модели: а - идеального газа; б - реального газа (г, и г 2 - эффективные радиусы взаимодействия при разных температурах)

4. Допускается, что нет никаких дополнительных физических ограничений (на число частиц, объем, давление, температуру и др. - они могут быть любыми) и внешних воздействий на систему в целом.

Мы имеем также в виду, что идеальный газ представляет собой совокупность огромного числа молекул, находящихся в состоянии термодинамического равновесия (система замкнута). В такой системе термодинамическое равновесие устанавливается только за счет взаимодействий между молекулами при их взаимных столкновениях. При этом в системе устанавливается статическое равновесие, которое означает, что все распределения частиц (по энергиям, по скоростям и т.д.) остаются неизменными во времени. Классический идеальный газ подчиняется так называемой статистике Больцмана (классической статистике).

Макроскопическое уравнение состояния идеального газа (может быть получено из молекулярно-кинетических представлений о газах. Известно, что одним из основных свойств газа является способность оказывать давление на стенки заключающего его сосуда. Определим это давление для идеального газа, состоящего из молекул одного сорта. Прежде всего напомним, что давлениер газа на стенки сосуда есть результат совокупного действия его молекул при их ударах о стенку. По определению, давление задается силой, действующей со стороны газа на единицу поверхности стенки ограничивающего его сосуда и перпендикулярной этой поверхности.

Направим ось х перпендикулярно стенке сосуда. Согласно второму закону Ньютона, сила, действующая со стороны газа на единицу поверхности стенки и перпендикулярная ее поверхности, равна изменению перпендикулярной составляющей импульса всех молекул газа, ударяющихся о стенку за единицу времени. Так как молекул очень много и они ударяются о стенку очень часто, то можно заменить их суммарное действие одной непрерывно действующей силой. Эта сила усредняет и как бы сглаживает отдельные толчки. Такое описание и соответствует статистическому методу. Так начинается переход от ньютоновской механики к статистическому описанию: место и время удара каждой молекулы о поверхность стенки совершенно не важны для анализа рассматриваемого явления (давления). Общий эффект их действия и есть то, что входит в статистический закон. Только он и важен для статистического описания системы. Тем не менее рассуждения надо начинать с рассмотрения отдельного удара.

Когда молекула, упруго взаимодействуя, отскакивает от стенки сосуда, перпендикулярная составляющая ее скорости меняет знак на обратный, а абсолютная величина скорости не изменяется (см. подраздел

1.4.5, рис. 1.37 и формулы (1.170), (1.171)). При упругом ударе частицы о стенку ее импульс не изменяется по абсолютной величине, но меняет свое направление. Поэтому

где т - масса молекулы; и х - проекция ее скорости на направление выбранной оси (ось х - перпендикулярна стенке).

Это изменение импульса молекулы газа происходит под действием силы, действующей на молекулу со стороны стенки. По третьему закону Ньютона «действие равно противодействию»: стенка сосуда, содержащего газ, при каждом ударе молекулы получает равный по величине и противоположный по направлению импульс, равный 2ти х. Сколько же ударов о единицу поверхности произойдет за единицу времени? По направлению к площадке S движется большое число молекул под разными углами к нормали к ее поверхности (от 0 до ±л/2). Мысленно выберем только те из них, проекции скоростей которых на ось х лежат в интервале от и х до и х + dи х. Обозначим через dN(v x) число молекул, проекции скоростей которых на ось х заключены в указанном интервале значений, и которые за время т достигнут площадки S на стенке сосуда. Тогда суммарное изменение импульса всех этих молекул в результате действия на них стенки равно 2mu x dN(u x), а средняя за время т сила di ? (i; x), действующая со стороны стенки на молекулы, составит:

Рис. 4.3.

Давление dр х действующее со стороны молекул с проекциями скоростей и х на стенку, запишется в виде:

Подсчитаем величину dN(v x). За время т стенки сосуда достигнут молекулы, находящиеся в объеме V= IS = v x xS (рис. 4.3). Обозначив концентрацию таких молекул через бл(о х), найдем:

Концентрация молекул, скорости которых лежат в интервале от и х до v x + dv x , может быть записана с использованием функции распределения f(v x) в виде:

где - нормированная функция распределения числа частиц

по проекциям скоростей v x , п - их концентрация и тогда

Давление, оказываемое на стенку молекулами, имеющими проекции скорости v x в интервале от и х до и х + d v x , будет

Если требуется подсчитать давление, вызываемое всеми молекулами, необходимо проинтегрировать полученное выражение по всем возможным значениям проекций скоростей (нулевой проекцией скорости на ось х обладают покоящиеся молекулы и молекулы, двигающиеся перпендикулярно оси х, а максимально возможное значение проекции скорости на осьх - условно «ос», относится к движению молекулы вдоль этой оси с наибольшей скоростью и тзх). Поэтому:

Интегрирование проводится по всем возможным значениям проекций v x . Поскольку в рассматриваемом случае газ находится в состоянии термодинамического равновесия, то молекулы движутся совершенно беспорядочно (хаотически) - все направления движения равновероятны. Проекции их скоростей на любую выбранную ось могут быть самыми разными по величине. При каждом столкновении любой молекулы с другими величина ее скорости должна, вообще говоря, изменяться, причем с равной вероятностью она может как возрастать, так и уменьшаться.

Так как изменения скоростей молекул при столкновениях происходят случайным образом, то может случиться, что в результате последовательных столкновений молекула все время будет только получать энергию от других молекул, и ее энергия будет значительно выше средней энергии, а следовательно, и скорости таких молекул также будут выше средней. Можно представить себе фантастический случай, когда все молекулы остановятся, передав всю энергию одной единственной молекуле. В этом случае все равно эта единственная молекула будет иметь конечную энергию и конечную величину скорости. Таким образом, скорость молекул газа не может быть больше некоторой и тах. Учитывая малую величину вероятности сосредоточения на одной молекуле заметной доли суммарной энергии всех молекул, можно утверждать, что слишком большие по сравнению со средним значением скорости (или энергии) могут появляться крайне редко. Поэтому в (4.19) верхний предел интегрирования можно принять равным бесконечности и от этого величина интеграла практически не изменится. Практически исключено, что в результате соударений скорость молекулы станет точно равной нулю. Следовательно, очень большие и очень малые по сравнению со средним значением скорости маловероятны, причем вероятность иметь значения скорости о х стремится к нулю как при v x -> 0, так и при и х -> оо. Отсюда также следует, что скорости молекул группируются вблизи некоторого наиболее вероятного значения (см. табл. 4.1).

В силу изотропности пространства положительное направление оси х может быть выбрано произвольно - результат не должен зависеть от выбора направления, так как считается, что любые направления в пространстве эквивалентны. Так как давление р создается только теми молекулами, которые движутся к стенке (т.е. половиной общего числа молекул, которые имеют положительные проекции и х), то с учетом (4.19) для давления получаем:

где (см. формулу (4.11)).

Выражение (4.20) можно видоизменить, перейдя от проекций скоростей молекул к абсолютным значениям этих скоростей. Действительно, в силу хаотичности движения молекул и изотропности пространства: , но откуда:

Подставляя выражение (4.21) в (4.20), получаем:

где - средняя кинетическая энергия молекул идеального

Выражение (4.22) является одной из форм записи основного уравнения молекулярно-кинетической теории идеального газа.

Таким образом, давление идеального газа равно двум третям объемной плотности средней кинетической энергии (и) поступательного движения молекул.

Другую форму записи уравнения (4.22) получим, умножив обе его части на объем одного моль V M газа:

Учитывая, что pV M = RT (уравнение Менделеева-Клапейрона для моль газа), a nV M = АД =6,02 10 23 моль - число Авогадро, имеем RT=

= (2/3) N a иОтношение обозначается к ъ - это

постоянная Больцмана : к ъ = 1,38 10 -23 Дж/К. Эта постоянная играет фундаментальную роль в молекулярной физике, физической статистике и термодинамике. С постоянной Больцмана выражение для средней кинетической энергии одной молекулы газа записывается в виде:

Произведение к ъ Т, имеющее размерность энергии, есть мера энергии теплового движения молекул.

Оценим величину к ъ Т для комнатной температуры.

При Т * 300 К, = 1,38 10- 23 (Дж/К) 300 К * 4 ? 10- 21 Дж * « 0,026 эВ = 26 мэВ. Напомним, что 1 эВ = 1,6 10 -19 Дж.

Теперь найдем связь давления с температурой. Для этого в (4.22) подставим выражение для из (4.24) и после сокращений получим:

Выражение (4.25) является другой формой записи основного уравнения молекулярно-кинетической теории. Если обе части (4.25) умножить на массу молекулы т, то получим: тр = тпк ъ Г, или тр = рк ь Т, где р - плотность газа, откуда следует, что абсолютная температура Т может быть определена выражением:

Выражение (4.26) может быть использовано для градуировки термометров и измерения абсолютной температуры Т по давлению р и плотности р газа.

  • В этой главе потенциальная и внутренняя энергия будут обозначаться символом U.
  • Здесь и далее символом р, который ранее использовался для обозначения импульса,мы будем обозначать давление. В дальнейшем при смене обозначений это будет специально оговариваться.
  • В этой главе мы будем обозначать кинетическую энергию буквой г..

Модель идеального газа

Первым шагом на пути построения физической тео­рии может быть создание мысленной модели объекта. Любая мысленная модель реального объекта обязательно является упрощением действительности и поэтому имеет определенные границы применимости, в пределах которых она может с успехом использоваться для описания известных свойств и предсказания новых, ранее неизвестных следствий теории.

Примером модели, использован­ной для теоретического объяснения свойств газов, может служить модель идеального газа. М.В.Ломоносов считал, что вещества состоят из корпускул, находящихся во вращательном движении, температура тела связана с вращательным движением этих корпускул.

Английский физик Д.Джоуль в 1852 г. предложил более точную модель, приписав молекулам газа поступательное движение. При этом он считал, что скорости всех молекул одинаковы. На основе этих предположений он теоретически вывел закон Бойля - Мариотта, вычислил скорость теплового движения молекул, определил значение абсолютно­го нуля.

В 1857 г. немецкий физик Р. Клаузиус, используя модель идеального газа, впервые систематически изложил кинетическую теорию газов. Он ввел понятие о средних величинах, длине свободного пробега молекул, вычислил давление газа на стенки сосуда и среднюю длину пути между двумя столкновениями молекул.

Идеальным Клаузиус назвал газ, удовлетворяющий следующим усло­виям:

· объемом всех молекул газа можно пренебречь по сравнению с объемом сосуда, в котором этот газ находится;

· время столкновения молекул друг с другом пренебрежимо мало по сравнению со временем между двумя столкновениями (т. е. време­нем свободного пробега моле­кулы);

· молекулы взаимодействуют между собой только при непосред­ственном соприкосновении, при этом они отталкиваются;

· силы притяжения между мо­лекулами идеального газа ничтожно малы и ими можно пренебречь.

Исходя из этих положений, Клау­зиус смог вывести все свойства идеального газа и установить соот­ношения между его микроскопичес­кими и макроскопическими парамет­рами.

Микроскопическими параметра­ми газа называют индивидуальные характеристики молекул. К их числу относятся масса молекулы, ее ско­рость, импульс и кинетическая энер­гия поступательного движения. Па­раметры газа как физического тела называются макроскопическими. К ним относятся температура, объем и давление газа. Одной из важнейших задач молекулярно-кинетической теории было установление связи между макроскопическими и микро­скопическими параметрами газа.

Строение газообразных, жидких и твердых тел

Молекулярно-кинетическая теория дает возможность поня ть, почему вещество может находиться в газообразном, жидком и твердом состояниях.

Газы. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул (рис.1). Например, при атмосферном давлении объем сосуда в десятки тысяч раз превышает объем находящихся в нем молекул.

Газы легко сжимаются, при этом уменьшается среднее расстояние между молекулами, но форма молекулы не изменяется (рис.2).

Рис.1 Рис.2

Молекулы с огромными скоростями — сотни метров в секунду – движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам. Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема. Многочисленные удары молекул о стенки сосуда создают давление газа.

Жидкости. Молекулы жидкости расположены почти вплотную друг к другу (рис.3), поэтому молекула жидкости ведет себя иначе, чем молекула газа.

В жидкостях существует так называемый ближний порядок, т. е. упорядоченное расположение молекул сохраняется на расстояниях, равных нескольким молекулярным диаметрам. Молекула колеблется около своего положения равновесия, сталкиваясь с соседними молекулами. Лишь время от времени она совершает очередной «прыжок», попадая в новое положение равновесия. В этом положении равновесия сила отталкивания равна силе притяжения, т. е. суммарная сила взаимодействия молекулы равна нулю.

Время оседлой жизни молекулы воды, т. е. время ее колебаний около одного определенного положения равновесия при комнатной температуре, равно в среднем 10 -11 с. Время же одного колебания значительно меньше (10 -12 -10 -13 с). С повышением температуры время оседлой жизни молекул уменьшается.

Характер молекулярного движения в жидкостях, впервые установленный советским физиком Я.И.Френкелем, позволяет понять основные свойства жидкостей.

Молекулы жидкости находятся непосредственно друг возле друга. При уменьшении объема, силы отталкивания становятся, очень велики. Этим и объясняется малая сжимаемость жидкостей. Как известно, жидкости текучи, т. е. не сохраняют своей формы. Объяснить это можно так. Внешняя сила заметно не меняет числа перескоков молекул в секунду. Но перескоки молекул из одного оседлого положения в другое происходят преимущественно в направлении действия внешней силы (рис.4). Вот почему жидкость течет и принимает форму сосуда.

Твердые тела. Атомы или молекулы твердых тел, в отличие от атомов и молекул жидкостей, колеблются около определенных положений равновесия. По этой причине твердые тела сохраняют не только объем, но и форму. Потенциальная энергия взаимодействия молекул твердого тела существенно больше их кинетической энергии.

Есть еще одно важное различие между жидкостями и твердыми телами. Жидкость можно сравнить с толпой людей, где отдельные индивидуумы беспокойно толкутся на месте, а твердое тело подобно стройной когорте тех же индивидуумов, которые хотя и не стоят по стойке смирно, но выдерживают между собой в среднем определенные расстояния. Если соединить центры положений равновесия атомов или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической.

На рисунках 5 и 6 изображены кристаллические решетки поваренной соли и алмаза. Внутренний порядок в расположении атомов кристаллов приводит к правильным внешним геометрическим формам.

Рис.5 Рис.6

У газа расстояние l между молекулами много больше размеров молекул r 0:l>>r 0 .

У жидкостей и твердых тел l≈r 0 . Молекулы жидкости расположены в беспорядке и время от времени перескакивают из одного оседлого положения в другое.

У кристаллических твердых тел молекулы (или атомы) расположены строго упорядоченно.

Кристаллизация - процесс фазового перехода вещества из жидкого состояния в твёрдое состояние.

Наиболее простой теоретической моделью газа является идеальный газ. В этой модели пренебрегают размерами и взаимодействиями молекул и учиты­вают лишь их упругие столкновения. Более реальной является расширенная модель идеального газа, в которой молекулы представляются упругими сферами с конечным диаметром d , а взаимодействие по-прежнему учитывается только при непосредственном упругом столкновении молекул.

Установим критерий, следуя которому можно установить, когда газ можно рассматривать как идеальный. Ясно, что газ будет идеаль­ным, если расстояние r между его молекулами такое, что силой взаимодействия между ними на этом расстоянии можно пренебречь. Как мы знаем, силы взаимодействия между молекулами быстро убывают с расстоянием r и уже на расстояниях в несколь­ко диаметров d молекулы пренебрежимо малы. Поэтому условие идеаль­ности газа в расширенном понимании можно записать в виде:

r>>d (1)

Расстояние r нетрудно выразить через такой важный параметр газа как концентрацию n=N/V , здесь N – число частиц в газе, а V – его объем. В самом деле, если газ находится в равновесии, при отсутствии внешних полей его молекулы будут равномерно распре­делены в объеме V м 3 , и тогда на ребре куба длиной 1 м расположиться 3 √n молекул. Следовательно, среднее расстояние между молекулами составит

r = 1/ 3 √n (2)

Из соотношений (1) и (2) следует, что критерий идеальности газа можно представить следующим образом

nd 3 << 1 , nd 3 – безразмерный параметр (3)

Учитывая, что число частиц в газе N=mN A /m , концентрацию можно выразить через плотность ρ газа:

n = N/ѵ = (m/ν)*(Na/m) = ρNa/m (4)

где ρ = m/V — плотность газа

Выражение (4) позволяет записать критерий идеальности газа (5) в эквивалентной форме

ρN A d 3 /m<<1 (5),

где: ρ – плотность газа; Na – постоянная Авагадро; m – масса газа; ν = N/Na – количество вещества.

Изопроцессы

Изопроцессы — это процессы, протекающие при неизменном значении одного из макроскопических параметров (р, V, Т).

Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим .

Изотермический процесс описывает закон Бойля- Мариотта, открытый в 1861 г. английским ученым Р. Бой-лем (1627-1691) и в 1876 г. французским ученым Э. Мари-оттом (1620-1684). При постоянной массе газа pV = const.

Для газа данной массы произведение давления на его объем постоянно, если температура не меняется.

Графики изотермического процесса в координатах р-V; р-Т; V-Т имеют следующий вид (рис. 7):

Процесс изменения состояния термодинамической системы при постоянном давлении называется изобарным. Из уравнения Менделеева-Клапейрона следует, что при

постоянной массе газа

Для данной массы газа отношение объема к температуре постоянно, если давление газа не меняется.

Этот закон был установлен экспериментально в 1802 г. французским ученым Ж. Гей-Люссаком (1778-1850).

Подробности Категория: Молекулярно-кинетическая теория Опубликовано 05.11.2014 07:28 Просмотров: 12962

Газ - одно из четырёх агрегатных состояний, в которых может находиться вещество.

Частицы, из которых состоит газ, очень подвижны. Они практически свободно и хаотично движутся, периодически сталкиваясь друг с другом подобно биллиардным шарам. Такое столкновение называют упругим столкновением . Во время столкновения они резко изменяют характер своего движения.

Так как в газообразных веществах расстояние между молекулами, атомами и ионами намного превышает их размеры, то между собой эти частицы взаимодействую очень слабо, и их потенциальная энергия взаимодействия очень мала по сравнению с кинетической.

Связи между молекулами в реальном газе сложные. Поэтому также довольно сложно описывать зависимость его температуры, давления, объёма от свойств самих молекул, их количества, скорости их движения. Но задача значительно упрощается, если вместо реального газа рассматривать его математическую модель - идеальный газ .

Предполагается, что в модели идеального газа между молекулами нет сил притяжения и отталкивания. Все они движутся независимо друг от друга. И к каждой из них можно применить законы классической механики Ньютона. А между собой они взаимодействуют только во время упругих столкновений. Время самого столкновения очень мало по сравнению со временем между столкновениями.

Классический идеальный газ

Попробуем представить молекулы идеального газа маленькими шариками, находящимися в огромном кубе на большом расстоянии друг от друга. Из-за этого расстояния они не могут друг с другом взаимодействовать. Следовательно, их потенциальная энергия равна нулю. Но эти шарики двигаются с огромной скоростью. А значит, обладают кинетической энергией. Когда они сталкиваются друг с другом и со стенками куба, они ведут себя как мячики, то есть упруго отскакивают. При этом они меняют направление своего движения, но не меняют скорости. Примерно так выглядит движение молекул в идеальном газе.

  1. Потенциальная энергия взаимодействия молекул идеального газа настолько мала, что ею пренебрегают по сравнению с кинетической энергией.
  2. Молекулы в идеальном газе также имеют настолько маленькие размеры, что их можно считать материальными точками. А это означает, что и их суммарный объём также ничтожно мал по сравнению с объёмом сосуда, в котором находится газ. И этим объёмом также пренебрегают.
  3. Среднее время между столкновениями молекул намного превышает время их взаимодействия при соударении. Поэтому временем взаимодействия пренебрегают также.

Газ всегда принимает форму сосуда, в котором находится. Движущиеся частицы сталкиваются друг с другом и со стенками сосуда. Во время удара каждая молекула действует на стенку с некоторой силой в течение очень короткого промежутка времени. Так возникает давление . Суммарное давление газа складывается из давлений всех молекул.

Уравнение состояния идеального газа

Состояние идеального газа характеризуют три параметра: давление , объём и температура . Зависимость между ними описывается уравнением:

где р - давление,

V M - молярный объём,

R - универсальная газовая постоянная,

T - абсолютная температура (градусы Кельвина).

Так как V M = V / n , где V - объём, n - количество вещества, а n = m/M , то

где m - масса газа, М - молярная масса. Это уравнение называется уравнением Менделеева-Клайперона .

При постоянной массе уравнение приобретает вид:

Это уравнение называют объединённым газовым законом .

Используя закон Менделеева-Клайперона, можно определить один из параметров газа, если известны два других.

Изопроцессы

С помощью уравнения объединённого газового закона можно исследовать процессы, в которых масса газа и один из важнейших параметров - давление, температура или объём - остаются постоянными. В физике такие процессы называются изопроцессами .

Из объединённого газового закона вытекают другие важнейшие газовые законы: закон Бойля-Мариотта , закон Гей-Люссака , закон Шарля, или второй закон Гей-Люссака.

Изотермический процесс

Процесс, в котором изменяются давление или объём, но температура остаётся постоянной, называется изотермическим процессом .

При изотермическом процессе T = const, m = const .

Поведение газа в изотермическом процессе описывает закон Бойля-Мариотта . Этот закон открыли экспериментальным путём английский физик Роберт Бойль в 1662 г. и французский физик Эдм Мариотт в 1679 г. Причём сделали они это независимо друг от друга. Закон Бойля-Мариотта формулируется следующим образом: В идеальном газе при постоянной температуре произведение давления газа на его объём также постоянно .

Уравнение Бойля-Мариотта можно вывести из объединённого газового закона. Подставив в формулу Т = const , получаем

p · V = const

Это и есть закон Бойля-Мариотта . Из формулы видно, что давление газа при постоянной температуре обратно пропорционально его объёму . Чем выше давление, тем меньше объём, и наоборот.

Как объяснить это явление? Почему же при увеличении объёма газа его давление становится меньше?

Так как температура газа не меняется, то не меняется и частота ударов молекул о стенки сосуда. Если увеличивается объём, то концентрация молекул становится меньше. Следовательно, на единицу площади придётся меньшее количество молекул, которые соударяются со стенками в единицу времени. Давление падает. При уменьшении объёма число соударений, наоборот, возрастает. Соответственно растёт и давление.

Графически изотермический процесс отображают на плоскости кривой, которую называют изотермой . Она имеет форму гиперболы .

Каждому значению температуры соответствует своя изотерма. Чем выше температура, тем выше расположена соответсвующая ей изотерма.

Изобарный процесс

Процессы изменения температуры и объёма газа при постоянном давлении, называются изобарными . Для этого процесса m = const, P = const.

Зависимость объёма газа от его температуры при неизменяющемся давлении также была установлена экспериментальным путём французским химиком и физиком Жозефом Луи Гей-Люссаком , опубликовавшем его в 1802 г. Поэтому её называют законом Гей-Люссака : " Пр и постоянном давлении отношение объёма постоянной массы газа к его абсолютной температуре является постоянной величиной".

При Р = const уравнение объединённого газового закона превращается в уравнение Гей-Люссака .

Пример изобарного процесса - газ, находящийся внутри цилиндра, в котором перемещается поршень. При повышении температуры растёт частота ударов молекул о стенки. Увеличивается давление, и поршень приподнимается. В итоге увеличивается объём, занимаемый газом в цилиндре.

Графически изобарный процесс отображается прямой линией, которая называется изобарой .

Чем больше давление в газе, тем ниже расположена на графике соответствующая изобара.

Изохорный процесс

Изохорным, или изохорическим, называют процесс изменения давления и температуры идеального газа при постоянном объёме.

Для изохорного процесса m = const, V = const.

Представить такой процесс очень просто. Он происходит в сосуде фиксированного объёма. Например, в цилиндре, поршень в котором не двигается, а жёстко закреплён.

Изохорный процесс описывается законом Шарля : «Для данной массы газа при постоянном объёме его давление пропорционально температуре ». Французский изобретатель и учёный Жак Александр Сезар Шарль установил эту зависимость с помощью экспериментов в 1787 г. В 1802 г. её уточнил Гей-Люссак. Поэтому этот закон иногда называют вторым законом Гей-Люссака.

При V = const из уравнения объединённого газового закона получаем уравнение закона Шарля, или второго закона Гей-Люссака .

При постоянном объёме давление газа увеличивается, если увеличивается его температура .

На графиках изохорный процесс отображается линией, которая называется изохорой .

Чем больше объём занимаемый газом, тем ниже расположена изохора, соответствующая этому объёму.

В реальности ни один параметр газа невозможно поддерживать неизменным. Это возможно сделать лишь в лабораторных условиях.

Конечно, в природе идеального газа не существует. Но в реальных разреженных газах при очень низкой температуре и давлении не выше 200 атмосфер расстояние между молекулами намного превышает их размеры. Поэтому их свойства приближаются к свойствам идеального газа.