Закон всемирного тяготения ньютона является предельным случаем. Что такое гравитация для чайников: определение и теория простыми словами

И. Ньютон сумел вывести из законов Кеплера один из фундаментальных законов природы - закон всемирного тяготения. Ньютон знал, что для всех планет Солнечной системы ускорение обратно пропорционально квадрату расстояния от планеты до Солнца и коэффициент пропорциональности - один и тот же для всех планет.

Отсюда следует прежде всего, что сила притяжения, действующая со стороны Солнца на планету, должна быть пропорциональна массе этой планеты. В самом деле, если ускорение планеты дается формулой (123.5), то сила, вызывающая ускорение,

где - масса этой планеты. С другой стороны, Ньютону было известно ускорение, которое Земля сообщает Луне; оно было определено из наблюдений движения Луны, обращающейся вокруг Земли. Это ускорение примерно в раз меньше ускорения , сообщаемого Землей телам, находящимся вблизи земной поверхности. Расстояние же от Земли до Луны равно приблизительно земным радиусам. Иными словами, Луна отстоит от центра Земли в раз дальше, чем тела, находящиеся на поверхности Земли, а ускорение ее в раз меньше.

Если принять, что Луна движется под действием притяжения Земли, то отсюда следует, что сила земного притяжения, так же как и сила притяжения Солнца, убывает обратно пропорционально квадрату расстояния от центра Земли. Наконец, сила притяжения Земли прямо пропорциональна массе притягиваемого тела. Этот факт Ньютон установил на опытах с маятниками. Он обнаружил, что период качаний маятника не зависит от его массы. Значит, маятникам разной массы Земля сообщает одинаковое ускорение, и, следовательно, сила притяжения Земли пропорциональна массе тела, на которое она действует. То же, конечно, следует из одинаковости ускорения свободного падения для тел разных масс, но опыты с маятниками позволяют проверить этот факт с большей точностью.

Эти сходные черты сил притяжения Солнца и Земли и привели Ньютона к заключению о том, что природа этих сил едина и что существуют силы всемирного тяготения, действующие между всеми телами и убывающие обратно пропорционально квадрату расстояния между телами. При этом сила тяготения, действующая на данное тело массы , должна быть пропорциональна массе .

Исходя из этих фактов и соображений, Ньютон сформулировал закон всемирного тяготения таким образом: любые два тела притягиваются друг к другу с силой, которая направлена по линии, их соединяющей, прямо пропорциональна массам обоих тел и обратно пропорциональна квадрату расстояния между ними, т. е. сила взаимного тяготения

где и - массы тел, - расстояние между ними, а - коэффициент пропорциональности, называемый гравитационной постоянной (способ ее измерения будет описан ниже). Сращивая эту формулу с формулой (123.4), видим, что , где - масса Солнца. Силы всемирного тяготения удовлетворяют третьему закону Ньютона. Это подтвердилось всеми астрономическими наблюдениями над движением небесных тел.

В такой формулировке закон всемирного тяготения применим к телам, которые можно считать материальными точками, т. е. к телам, расстояние между которыми очень велико по сравнению с их размерами, иначе следовало бы учитывать, что разные точки тел отстоят друг от друга на разные расстояния. Для однородных шарообразных тел формула верна при любом расстоянии между телами, если в качестве взять расстояние между их центрами. В частности, в случае притяжения тела Землей расстояние нужно отсчитывать от центра Земли. Это объясняет тот факт, что сила тяжести почти не убывает по мере увеличения высоты над Землей (§ 54): так как радиус Земли равен примерно 6400, то при изменении положения тела над поверхностью Земли в пределах даже десятков километров сила притяжения Земли остается практически неизменной.

Гравитационную постоянную можно определить, измерив все остальные величины, входящие в закон всемирного тяготения, для какого-либо конкретного случая.

Определить значение гравитационной постоянной впервые удалось при помощи крутильных весов, устройство которых схематически изображено на рис. 202. Легкое коромысло, на концах которого закреплены два одинаковых шара массы , повешено на длинной и тонкой нити. Коромысло снабжено зеркальцем, которое позволяет оптическим способом измерять малые повороты коромысла вокруг вертикальной оси. К шарам с разных сторон могут быть приближены два шара значительно большей массы .

Рис. 202. Схема крутильных весов для измерения гравитационной постоянной

Силы притяжения малых шаров к большим создают пару сил, вращающую коромысло по часовой стрелке (если смотреть сверху). Измерив угол, на который поворачивается коромысло при приближении к шарам шаров , и, зная упругие свойства нити, на которой подвешено коромысло, можно определить момент пары сил, с которыми притягиваются массы к массам . Так как массы шаров и и расстояние между их центрами (при данном положении коромысла) известны, то из формулы (124.1) может быть найдено значение . Оно оказалось равным

После того как было определено значение , оказалось возможным из закона всемирного тяготения определить массу Земли. Действительно, в соответствии с этим законом, тело массы , находящееся у поверхности Земли, притягивается к Земле с силой

где - масса Земли, а - ее радиус. С другой стороны, мы знаем, что . Приравняв эти величины, найдем

.

Таким образом, хотя силы всемирного тяготения, действующие между телами различной массы, равны, значительное ускорение получает тело малой массы, а тело большой массы испытывает малое ускорение.

Так как суммарная масса всех планет Солнечной системы составляет немногим больше массы Солнца, ускорение, которое испытывает Солнце в результате действия на него сил тяготения со стороны планет, ничтожно мало по сравнению с теми ускорениями, которые сила тяготения Солнца сообщает планетам. Относительно малы и силы тяготения, действующие между планетами. Поэтому при рассмотрении законов движения планет (законов Кеплера) мы не учитывали движения самого Солнца и приближенно считали, что траектории планет - эллиптические орбиты, в одном из фокусов которых находится Солнце. Однако в точных расчетах приходится принимать во внимание те «возмущения», которые вносят в движение самого Солнца или какой-либо планеты силы тяготения со стороны других планет.

124.1. Насколько уменьшится сила земного притяжения, действующая на ракетный снаряд, когда он поднимется на 600 км над поверхностью Земли? Радиус Земли принять равным 6400 км.

124.2. Масса Луны в 81 раз меньше массы Земли, а радиус Луны приблизительно в 3,7 раза меньше радиуса Земли. Найдите вес человека на Луне, если его вес на Земле равен 600Н.

124.3. Масса Луны в 81 раз меньше массы Земли. Найдите на линии, соединяющей центры Земли и Луны, точку, в которой равны друг другу силы притяжения Земли и Луны, действующие на помещенное в этой точке тело.

Я решил по мере сил и возможностей подробнее остановиться на освещении научного наследия академика Николая Викторовича Левашова , потому что вижу, что его работы сегодня ещё не пользуются тем спросом, каким они должны были бы пользоваться в обществе действительно свободных и разумных людей. Люди ещё не понимают ценности и важности его книг и статей, потому что не догадываются о степени обмана, в котором мы живём последние пару веков; не понимают, что сведения о природе, которые мы считаем привычными и поэтому истинными, являются ложными на 100% ; и навязаны они нам намеренно, чтобы скрыть правду и не дать нам развиваться в правильном направлении…

Закон всеобщего тяготения

А зачем нам разбираться с этой гравитацией? Разве мы о ней чего-то ещё не знаем. Ну что вы! Мы уже очень много знаем о гравитации! Например, Википедия любезно сообщает нам, что «Гравитация (притяжение , всемирное , тяготение ) (от лат. gravitas – «тяжесть») – универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна…» Т.е. проще говоря, эта Интернет-болтушка сообщает, что гравитация – это взаимодействие между всеми материальными телами, а ещё проще говоря – взаимное притяжение материальных тел друг к другу.

Появлению такого мнения мы обязаны тов. Исааку Ньютону, которому приписывают открытие в 1687 году «Закона всеобщего тяготения» , по которому все тела якобы притягиваются друг к дружке пропорционально их массам и обратно пропорционально квадрату расстояния между ними. Радует уже то, что тов. Исаак Ньютон описан в Педии, как высокообразованный учёный, не в пример тов. , которому приписывают открытие электричества

Интересно взглянуть на размерность «Силы притяжения» или «Силы тяжести», которая вытекает из тов. Исаака Ньютона, имеющего следующий вид: F = m 1 * m 2 / r 2

В числителе стоит произведение масс двух тел. Это даёт размерность «килограммы в квадрате» – кг 2 . В знаменателе стоит «расстояние» в квадрате, т.е. метры в квадрате – м 2 . Но ведь сила-то измеряется не в странных кг 2 /м 2 , а в не менее странных кг*м/с 2 ! Получается нестыковочка. Чтобы её убрать, «учёные» придумали коэффициент, т.н. «гравитационную постоянную» G , равную примерно 6,67545×10 −11 м³/(кг·с²) . Если теперь всё перемножить, получим правильную размерность «Силы тяжести» в кг*м/с 2 , и вот эта абракадабра носит в физике название «ньютон» , т.е. сила в сегодняшней физике измеряется в « ».

А интересно: какой физический смысл имеет коэффициент G , для чего-то уменьшающий результат в 600 миллиардов раз? Никакого! «Учёные» назвали его «коэффициентом пропорциональности». А ввели его для подгонки размерности и результата под наиболее желательный! Вот такая у нас наука на сегодняшний день… Надо отметить, что, для запутывания учёных и сокрытия противоречий, в физике несколько раз менялись системы измерений – т.н. «системы единиц» . Вот названия некоторых из них, сменявших друг друга, по мере возникновения необходимости создания очередных маскировок: МТС, МКГСС, СГС, СИ…

Интересно было бы спросить у тов. Исаака: а как он догадался , что существует природный процесс притягивания тел друг к другу? Как он догадался , что «Сила притяжения» пропорциональна именно произведению масс двух тел, а не их сумме или разности? Каким образом он так удачно постиг, что эта Сила обратно пропорциональна именно квадрату расстояния между телами, а не кубу, удвоению или дробной степени? Откуда у тов. появились такие необъяснимые догадки 350 лет назад? Ведь никаких опытов в этой области он не проводил! И, если верить традиционной версии истории, в те времена даже линейки были ещё не совсем ровные, а тут такая необъяснимая, просто фантастическая прозорливость! Откуда ?

Да ниоткуда ! Тов. Исаак ни о чём таком не догадывался и ничего подобного не исследовал и не открывал . Почему? Потому что в действительности физического процесса «притяжения тел» друг к другу не существует, и, соответственно, не существует и Закона, который бы описывал этот процесс (это ниже будет убудительно доказано)! В реальности тов. Ньютону в нашем невнятном, просто приписали открытие закона «Всемирного тяготения», попутно наградив его званием «одного из создателей классической физики»; точно так же, как в своё время приписали тов. Бене Франклину , который имел 2 класса образования. В «Средневековой Европе» и не такое бывало: там не только с науками, но и просто с жизнью была большая напряжёнка…

Но, на наше счастье, в конце прошлого века, русский учёный Николай Левашов написал несколько книг, в которых дал «алфавит и грамматику» неискажённых знаний ; вернул землянам уничтоженную ранее научную парадигму, с помощью которой легко объяснил практически все «неразрешимые» загадки земной природы; объяснил основы строения Мироздания; показал, при каких условиях на всех планетах, на которых появляются необходимые и достаточные условия, возникает Жизнь – живая материя. Растолковал, какая именно материя может считаться живой, и каков физический смысл природного процесса под название «жизнь ». Далее пояснил, когда и при каких условиях «живая материя» обретает Разум , т.е. осознаёт своё существование – становится разумной. Николай Викторович Левашов передал людям в своих книгах , и фильмах очень много неискажённых знаний . В том числе, он объяснил и что такое «гравитация» , откуда она берётся, как действует, каков в действительности её физический смысл. Больше всего об этом написано в книгах и . А теперь разберёмся с «Законом всемирного тяготения»…

«Закон всемирного тяготения» – выдумка!

Почему я так смело и уверенно критикую физику, «открытие» тов. Исаака Ньютона и сам «великий» «Закон всемирного тяготения»? Да потому что этот «Закон» – выдумка! Обман! Фикция! Афёра всемирного масштаба, чтобы увести земную науку в тупик! Такая же афёра с теми же целями, как и пресловутая «Теория относительности» тов. Эйнштейна.

Доказательства? Извольте, вот они: очень точные, строгие и убедительные. Их великолепно описал автор О.Х. Деревенский в своей замечательной статье . Ввиду того, что статья довольно объёмная, я приведу здесь очень краткий вариант некоторых доказательств ложности «Закона всемирного тяготения», а граждане, интересующиеся подробностями, остальное дочитают уже сами.

1. В нашей Солнечной системе гравитацией обладают только планеты и Луна – спутник Земли. Спутники же остальных планет, а их более шести десятков, гравитацией не обладают! Эта информация совершенно открытая, но не афишируемая «учёным» людом, потому что необъяснима с точки зрения их «науки». Т.е. бо льшая часть объектов нашей Солнечной системы гравитацией не обладают – не притягиваются друг к другу! И это начисто опровергает «Закон всеобщего тяготения».

2. Опыт Генри Кавендиша по притягиванию массивных болванок друг к другу считается неопровержимым доказательством наличия притяжения между телами. Однако, несмотря на его простоту, этот опыт нигде открыто не воспроизводится. Видимо, потому, что он не даёт того эффекта, о котором когда-то объявили некие люди. Т.е. сегодня, при возможности строгой проверки, опыт не показывает никакого притяжения между телами!

3. Вывод искусственного спутника на орбиту вокруг астероида. В середине февраля 2000 года американцы подогнали космический зонд NEAR достаточно близко к астероиду Эрос , уровняли скорости и стали ждать захвата зонда тяготением Эроса , т.е. когда спутник мягко притянется тяготением астероида.

Но первое свидание почему-то не заладилось. Вторая и последующие попытки отдаться Эросу имели ровно такой же эффект: Эрос не возжелал притянуть к себе американский зонд NEAR , а без подработки двигателем, зонд вблизи Эроса не держался. Это космическое свидание так и закончилось ничем. Т.е. никакого притяжения между зондом с массой 805 кг и астероидом массой более 6 триллионов тонн обнаружить не удалось.

Здесь нельзя не отметить ничем не объяснимое упорство американцев из НАСА, ведь русский учёный Николай Левашов , проживая в то время в США, которые он тогда считал вполне нормальной страной, написал, перевёл на английский язык и издал в 1994 году свою знаменитую книгу , в которой «на пальцах» объяснил всё, что нужно было знать специалистам из НАСА, чтобы их зонд NEAR не болтался безполезной железкой в Космосе, а принёс хоть какую-нибудь пользу обществу. Но, видимо, непомерное самомнение сыграло свою шутку с тамошними «учёными».

4. Следующую попытку повторить эротический эксперимент с астероидом взялись японцы . Они выбрали астероид под названием Итокава , и направили 9 мая 2003 года к нему зонд под названием («Сокол»). В сентябре 2005 года зонд приблизился к астероиду на расстояние 20 км.

Учтя опыт «тупых американцев», умные японцы свой зонд оснастили несколькими движками и автономной системой ближней навигации с лазерными дальномерами, так что он мог сближаться с астероидом и двигаться около него автоматически, без участия наземных операторов. «Первым номером этой программы оказался комедийный трюк с высадкой небольшого исследовательского робота на поверхность астероида. Зонд снизился на расчётную высоту и аккуратненько сбросил робота, который должен был медленно и плавно упасть на поверхность. Но… не упал. Медленно и плавно его понесло куда-то вдаль от астероида . Там и пропал без вести… Следующим номером программы оказался, опять же, комедийный трюк с кратковременной посадкой зонда на поверхность «для взятия пробы грунта». Комедийным он вышел оттого, что, для обеспечения наилучшей работы лазерных дальномеров, на поверхность астероида был сброшен отражающий шар-маркер. На этом шаре тоже движков не было и… короче, на положенном месте шара не оказалось… Так что сел ли японский «Сокол» на Итокаву, и что он на ней делал, если сел, – науке неизвестно…» Вывод: японская чуда Хаябуса не смогла обнаружить никакого притяжения между зондом массой 510 кг и астероидом массой 35 000 тонн.

Отдельно хочется заметить, что исчерпывающее объяснение природе гравитации русский учёный Николай Левашов дал в своей книге , которую впервые издал в 2002 году – почти за полтора года до старта японского «Сокола». И, несмотря на это, японские «учёные» пошли точно по стопам своих американских коллег и тщательно повторили все их ошибки, включая посадку. Вот такая интересная преемственность «научного мышления»…

5. Откуда берутся приливы? Очень интересное явление, описываемое в литературе, мягко выражаясь, не совсем корректно. «…Есть учебники по физике , где написано, каковы должны быть – в согласии с «законом всемирного тяготения». А ещё есть учебники по океанографии , где написано, каковы они, приливы, на самом деле .

Если закон всемирного тяготения здесь действует, и океанская вода притягивается, в том числе, к Солнцу и к Луне, то «физическая» и «океанографическая» картины приливов должны совпадать. Так совпадают они или нет? Оказывается: сказать, что они не совпадают – это ещё ничего не сказать. Потому что «физическая» и «океанографическая» картины вообще не имеют между собой ничего общего … Фактическая картина приливных явлений настолько сильно отличается от теоретической – и качественно, и количественно – что на основе такой теории предвычислять приливы невозможно . Да никто и не пытается это делать. Не сумасшедшие ведь. Делают вот как: для каждого порта или иного пункта, который представляет интерес, динамику уровня океана моделируют суммой колебаний с амплитудами и фазами, которые находят чисто эмпирически . А затем экстраполируют эту сумму колебаний вперёд – вот вам и получаются предвычисления. Капитаны судов довольны – ну и ладушки!..» Это всё означает, что наши земные приливы тоже не подчиняются «Закону всемирного тяготения».

Что такое гравитация в действительности

Настоящую природу гравитации впервые в новейшей истории внятно описал академик Николай Левашов в фундаментальном научном труде . Чтобы читатель лучше мог понять написанное касательно гравитации, дам небольшое предварительное пояснение.

Пространство вокруг нас не является пустым. Оно всё полностью заполнено множеством различных материй, которые академик Н.В. Левашов назвал «первоматериями» . Раньше учёные всё это буйство материй называли «эфиром» и даже получили убедительные доказательства его существования (известные опыты Дайтона Миллера, описанные в статье Николая Левашова «Теория Вселенной и объективная реальность»). Современные «учёные» пошли гораздо дальше и теперь они «эфир» называют «тёмной материей» . Колоссальный прогресс! Некоторые материи в «эфире» взаимодействуют между собой в той или иной степени, некоторые – нет. А какие-то первоматерии начинают взаимодействовать между собой, попадая в изменённые внешние условия в тех или иных искривлениях пространства (неоднородностях).

Искривления пространства появляются в результате различных взрывов, в том числе и «взрывов сверхновых». « При взрыве сверхновой, возникают колебания мерности пространства, аналогичные волнам, которые появляются на поверхности воды после броска камня. Массы материи, выброшенные при взрыве, заполняют эти неоднородности мерности пространства вокруг звезды. Из этих масс материи начинают образовываться планеты ( и )…»

Т.е. планеты образуются не из космического мусора, как почему-то утверждают современные «учёные», а синтезируются из материи звёзд и других первоматерий, начинающих взаимодействовать между собой в подходящих неоднородностях пространства и образующих т.н. «гибридные материи» . Вот из этих «гибридных материй» образуются и планеты, и всё остальное в нашем пространстве. Наша планета , так же, как и остальные планеты, является не просто «куском камня», а весьма непростой системой, состоящей из нескольких сфер, вложенных одна в другую (см. ). Самая плотная сфера называется «физически плотным уровнем» – это видимый нами, т.н. физический мир. Вторая по плотности сфера чуть большего размера – это т.н. «эфирный материальный уровень» планеты. Третья сфера – «астральный материальный уровень». Четвёртая сфера – «первый ментальный уровень» планеты. Пятая сфера – «второй ментальный уровень» планеты. И шестая сфера – «третий ментальный уровень» планеты.

Наша планета должна рассматриваться только как совокупность этих шести сфер – шести материальных уровней планеты, вложенных одна в другую. Только в этом случае можно получить полноценное представление о строении и свойствах планеты и о процессах, происходящих в природе. То, что мы пока не в состоянии наблюдать процессы, происходящие вне физически плотной сферы нашей планеты, свидетельствует не о том, что «там ничего нет», а лишь о том, что в настоящее время наши органы чувств не приспособлены природой для этих целей. И ещё: наша Вселенная, наша планета Земля и всё остальное в нашей Вселенной образовано из семи различных видов первоматерий, слившихся в шесть гибридных материй. И это не является ни божественным, ни уникальным явлением. Это просто качественная структура нашей Вселенной, обусловленная свойствами неоднородности, в которой она образовалась.

Продолжим: планеты образуются при слиянии соответствующих первоматерий в областях неоднородностей пространства, имеющих подходящие для этого свойства и качества. Но в эти, как и во все остальные, области пространства попадает огромное число первоматерий (свободных форм материй) различных видов, не взаимодействующих или очень слабо взаимодействующих с гибридными материями. Попадая в область неоднородности, многие из этих первоматерий подвергаются воздействию этой неоднородности и устремляются к её центру, в соответствии с градиентом (перепадом) пространства. И, если в центре этой неоднородности уже образовалась планета, то первоматерии, двигаясь к центру неоднородности (и центру планеты), создают собой направленный поток , который и создаёт т.н. гравитационное поле . И, соответственно, под гравитацией нам с вами нужно понимать воздействие направленного потока первоматерий на всё, находящееся на его пути. Т.е., проще говоря, гравитация – это прижимание материальных объектов к поверхности планеты потоком первоматерий.

Не правда ли, реальность весьма сильно отличается от выдуманного закона «взаимного притяжения», якобы существующего везде по никому не понятной причине. Реальность гораздо интереснее, гораздо сложнее и гораздо проще, одновременно. Потому физику реальных природных процессов понять гораздо легче, чем выдуманных. И использование реальных знаний ведёт к реальным открытиям и эффективному использованию этих открытий, а не к высосанным из пальца .

Антигравитация

В качестве примера сегодняшней научной профанации можно кратко проанализировать объяснение «учёными» того факта, что «лучи света искривляются вблизи больших масс», и поэтому мы можем видеть то, что закрыто он нас звёздами и планетами.

Действительно, мы можем наблюдать в Космосе объекты, скрытые от нас другими объектами, но это явление не имеет никакого отношения к массам объектов, потому что явления «всемирного » не существует, т.е. ни звёзды, ни планеты НЕ притягивают к себе никакие лучи и не искривляют их траекторию! А, почему же тогда они «искривляются»? На этот вопрос есть очень простой и убедительный ответ: лучи не искривляются ! Просто они распространяются не по прямой , как мы привыкли понимать, а в соответствии с формой пространства . Если мы рассматриваем луч, проходящий возле большого космического тела, то надо иметь в виду, что луч огибает это тело, потому что вынужден следовать по искривлению пространства, как по дороге соответствующей формы. И другого пути у луча просто не существует. Луч не может не огибать это тело, потому что пространство в этом районе имеет вот такую искривлённую форму… Небольшая к сказанному.

Теперь, возвращаясь к антигравитации , становится понятно, почему Человечеству никак не удаётся поймать эту противную «антигравитацию» или достичь хоть чего-нибудь из того, что показывают нам по телевизору ловкие функционеры фабрики грёз. Нас специально заставляют уже больше сотни лет почти везде использовать двигатели внутреннего сгорания или реактивные двигатели, хотя они очень далеки от совершенства и по принципу действия, и по конструкции, и по эффективности. Нас специально заставляют добывать , используя различные генераторы циклопических размеров, а потом передавать эту энергию по проводам, где бо льшая её часть рассеивается в пространстве! Нас специально заставляют жить жизнью неразумных существ, поэтому мы не имеем никаких оснований для удивления тому, что у нас ничего толкового не получается ни в науке, ни в технике, ни в экономике, ни в медицине, ни в организации достойной жизни социума.

Я сейчас вам приведу несколько примеров создания и использования антигравитации (она же левитация) в нашей жизни. Но эти способы достижения антигравитации являются, скорее всего, случайно обнаруженными. А для того, чтобы сознательно создать действительно полезное устройство, реализующее антигравитацию, нужно познать реальную природу явления гравитации, изучить его, проанализировать и понять всю его суть! Только тогда можно создать нечто толковое, эффективное и действительно полезное обществу.

Самое распространённое у нас устройство, использующее антигравитацию, это воздушный шарик и многочисленные его вариации. Если его наполнить тёплым воздухом или газом, более лёгким, чем атмосферная газовая смесь, то шарик будет стремиться улететь вверх, а не опуститься вниз. Этот эффект известен людям очень давно, но до сих пор не имеет исчерпывающего объяснения – такого, которое уже не порождало бы новых вопросов.

Недолгий поиск в Ютюбе привёл к обнаружению большого числа видеороликов, на которых демонстрируются вполне реальные примеры антигравитации. Некоторые из них я перечислю здесь, чтобы вы смогли убедиться, что антигравитация (левитация ) действительно существует, но… до сих пор никем из «учёных» не объяснена, видимо, гордость не позволяет…

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения . Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.

Закон всемирного тяготения

Ньютон обобщил законы движения небесных тел и выяснил, что сила \(F \) равна:

\[ F = G \dfrac{m_1 m_2}{R^2} \]

где \(m_1 \) и \(m_2 \) - массы взаимодействующих тел, \(R \) - расстояние между ними, \(G \) - коэффициент пропорциональности, который называется гравитационной постоянной . Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.

Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если \(m_1 = m_2 = 1 \text{кг} \) , \(R = 1 \text{м} \) , то \(G = F \) , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м.

Численное значение:

\(G = 6,67 \cdot{} 10^{-11} Н \cdot{} м^2/ кг^2 \) .

Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Сила тяжести

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свбодного падения.

В соответствии со вторым законом Ньютона \(g = F_Т /m \) , следовательно, \(F_T = mg \) .

Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна

\(F = G \dfrac{M}{R^2}m = mg \) .

Сила тяжести всегда направлена к центру Земли. В зависимости от высоты \(h \) над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с 2 .

Вес тела

В технике и быту широко используется понятие веса тела.

Вес тела обозначается \(P \) . Единица веса - ньютон (Н ). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

При этом предполагается, что тело неподвижно относительно опоры или подвеса.

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Состояние тела, в котором его вес равен нулю, называют невесомостью . Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Почему выпущенный из рук камень падает на Землю? Потому что его притягивает Земля, скажет каждый из вас. В самом деле, камень падает на Землю с ускорением свободного падения. Следовательно, на камень со сто-роны Земли действует сила, направленная к Земле. Согласно третьему закону Ньютона и камень действует на Землю с такой же по модулю силой, направленной к камню. Иными словами, между Землей и камнем действуют силы взаимного притяжения.

Ньютон был первым, кто сначала догадался, а потом и строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила тяготения, действующая между любыми телами Вселенной. Вот ход его рассуждений, приведенных в главном труде Ньютона «Математические начала натуральной философии»:

«Брошенный горизонтально камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, то он упадет дальше» (рис. 1).

Продолжая эти рассуждения, Ньютон приходит к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы с определенной скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался вокруг нее «подобно тому, как планеты описывают в небесном пространстве свои орбиты».

Сейчас нам стало настолько привычным движение спутников вокруг Земли, что разъяснять мысль Ньютона подробнее нет необходимости.

Итак, по мнению Ньютона, движение Луны вокруг Земли или планет вокруг Солнца – это тоже свободное падение, но только падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого «падения» (идет ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) является сила всемирного тяготения. От чего же эта сила зависит?

Зависимость силы тяготения от массы тел

Галилей доказал, что при свободном падении Земля сообщает всем телам в данном месте одно и то же ускорение независимо от их массы. Но ускорение по второму закону Ньютона обратно пропорционально массе\. Как же объяснить, что ускорение, сообщаемое телу силой притяжения Земли, одинаково для всех тел? Это возможно лишь в том случае, если сила притяжения к Земле прямо пропорциональна массе тела. В этом случае увеличение массы т, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а ускорение, которое равно \(a = \frac {F}{m}\), останется неизменным. Обобщая этот вывод для сил тяготения между любыми телами, заключаем, что сила всемирного тяготения прямо пропорциональна массе тела, на которое эта сила действует.

Но во взаимном притяжении участвуют по меньшей мере два тела. На каждое из них, согласно третьему закону Ньютона, действуют одинаковые по модулю силы тяготения. Поэтому каждая из этих сил должна быть пропорциональна как массе одного тела, так и массе другого тела. Поэтому сила всемирного тяготения между двумя телами прямо пропорциональна произведению их масс:

\(F \sim m_1 \cdot m_2\)

Зависимость силы тяготения от расстояния между телами

Из опыта хорошо известно, что ускорение свободного падения равно 9,8 м/с 2 и оно одинаково для тел, падающих с высоты 1, 10 и 100 м, т. е. не зависит от расстояния между телом и Землей. Это как будто бы означает, что и сила от расстояния не зависит. Но Ньютон считал, что отсчитывать расстояния надо не от поверхности, а от центра Земли. Но радиус Земли 6400 км. Понятно, что несколько десятков, сотен или даже тысяч метров над поверхностью Земли не могут заметно изменить значение ускорения свободного падения.

Чтобы выяснить, как влияет расстояние между телами на силу их вза-имного притяжения, нужно было бы узнать, каково ускорение тел, удаленных от Земли на достаточно большие расстояния. Однако наблюдать и изучать свободное падение тела с высоты в тысячи километров над Землей трудно. Но сама природа пришла здесь на помощь и дала возможность определить ускорение тела, движущегося по окружности вокруг Земли и обладающего поэтому центростремительным ускорением, вызванным, разумеется, той же силой притяжения к Земле. Таким телом является естественный спутник Земли – Луна. Если бы сила притяжения между Землей и Луной не зависела от расстояния между ними, то центростремительное ускорение Луны было бы таким же, как ускорение тела, свободно падающего близ поверхности Земли. В действительности же центростремительное ускорение Луны равно 0,0027 м/с 2 .

Докажем это . Обращение Луны вокруг Земли происходит под действием силы тяготения между ними. Приближенно орбиту Луны можно считать окружностью. Следовательно, Земля сообщает Луне центростремительное ускорение. Оно вычисляется по формуле \(a = \frac {4 \pi^2 \cdot R}{T^2}\), где R – радиус лунной орбиты, равный примерно 60 радиусам Земли, Т ≈ 27 сут 7 ч 43 мин ≈ 2,4∙10 6 с – период обращения Луны вокруг Земли. Учитывая, что радиус Земли R з ≈ 6,4∙10 6 м, получим, что центростремительное ускорение Луны равно:

\(a = \frac {4 \pi^2 \cdot 60 \cdot 6,4 \cdot 10^6}{(2,4 \cdot 10^6)^2} \approx 0,0027\) м/с 2 .

Найденное значение ускорения меньше ускорения свободного падения тел у поверхности Земли (9,8 м/с 2) приблизительно в 3600 = 60 2 раз.

Таким образом, увеличение расстояния между телом и Землей в 60 раз привело к уменьшению ускорения, сообщаемого земным притяжением, а следовательно, и самой силы притяжения в 60 2 раз.

Отсюда вытекает важный вывод: ускорение, которое сообщает телам сила притяжения к Земле, убывает обратно пропорционально квадрату расстояния до центра Земли

\(F \sim \frac {1}{R^2}\).

Закон всемирного тяготения

В 1667 г. Ньютон окончательно сформулировал закон всемирного тяготения:

\(F = G \cdot \frac {m_1 \cdot m_2}{R^2}.\quad (1)\)

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними .

Коэффициент пропорциональности G называется гравитационной постоянной .

Закон всемирного тяготения справедлив только для таких тел, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. Иначе говоря, он справедлив только для материальных точек . При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 2). Подобного рода силы называются центральными.

Для нахождения силы тяготения, действующей на данное тело со сто-роны другого, в случае, когда размерами тел пренебречь нельзя, поступают следующим образом. Оба тела мысленно разделяют на столь малые элементы, чтобы каждый из них можно было считать точечным. Складывая силы тяготения, действующие на каждый элемент данного тела со стороны всех элементов другого тела, получают силу, действующую на этот элемент (рис. 3). Проделав такую операцию для каждого элемента данного тела и сложив полученные силы, находят полную силу тяготения, действующую на это тело. Задача эта сложная.

Есть, однако, один практически важный случай, когда формула (1) применима к протяженным телам. Можно доказать, что сферические тела, плотность которых зависит только от расстояний до их центров, при расстояниях между ними, больших суммы их радиусов, притягиваются с силами, модули которых определяются формулой (1). В этом случае R – это расстояние между центрами шаров.

И наконец, так как размеры падающих на Землю тел много меньше размеров Земли, то эти тела можно рассматривать как точечные. Тогда под R в формуле (1) следует понимать расстояние от данного тела до центра Земли.

Между всеми телами действуют силы взаимного притяжения, зависящие от самих тел (их масс) и от расстояния между ними.

Физический смысл гравитационной постоянной

Из формулы (1) находим

\(G = F \cdot \frac {R^2}{m_1 \cdot m_2}\).

Отсюда следует, что если расстояние между телами численно равно единице (R = 1 м) и массы взаимодействующих тел тоже равны единице (m 1 = m 2 = 1 кг), то гравитационная постоянная численно равна модулю силы F . Таким образом (физический смысл ),

гравитационная постоянная численно равна модулю силы тяготения, действующей на тело массой 1 кг со стороны другого тела такой же массы при расстоянии между телами, равном 1 м .

В СИ гравитационная постоянная выражается в

.

Опыт Кавендиша

Значение гравитационной постоянной G может быть найдено только опытным путем. Для этого надо измерить модуль силы тяготения F , действующей на тело массой m 1 со стороны тела массой m 2 при известном расстоянии R между телами.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. английским физиком Г. Кавендишем с помощью прибора, называемого крутильными весами. Схематично крутильные весы показаны на рисунке 4.

Кавендиш закрепил два маленьких свинцовых шара (диаметром 5 см и массой m 1 = 775 г каждый) на противоположных концах двухметрового стержня. Стержень был подвешен на тонкой проволоке. Для этой проволоки предварительно определялись силы упругости, возникающие в ней при закручивании на различные углы. Два больших свинцовых шара (диаметром 20 см и массой m 2 = 49,5 кг) можно было близко подводить к маленьким шарам. Силы притяжения со стороны больших шаров заставляли маленькие шары перемещаться к ним, при этом натянутая проволока немного закручивалась. Степень закручивания была мерой силы, действующей между шарами. Угол закручивания проволоки (или поворота стержня с малыми шарами) оказался столь малым, что его пришлось измерять с помощью оптической трубы. Результат, полученный Кавендишем, только на 1% отличается от значения гравитационной постоянной, принятого сегодня:

G ≈ 6,67∙10 -11 (Н∙м 2)/кг 2

Таким образом, силы притяжения двух тел массой по 1 кг каждое, находящихся на расстоянии 1 м друг от друга, по модулям равны всего лишь 6,67∙10 -11 Н. Это очень малая сила. Только в том случае, когда взаимодействуют тела огромной массы (или по крайней мере масса одного из тел велика), сила тяготения становится большой. Например, Земля притягивает Луну с силой F ≈ 2∙10 20 Н.

Гравитационные силы – самые «слабые» из всех сил природы. Это связано с тем, что гравитационная постоянная мала. Но при больших массах космических тел силы всемирного тяготения становятся очень большими. Эти силы удерживают все планеты возле Солнца.

Значение закона всемирного тяготения

Закон всемирного тяготения лежит в основе небесной механики – науки о движении планет. С помощью этого закона с огромной точностью определяются положения небесных тел на небесном своде на многие десятки лет вперед и вычисляются их траектории. Закон всемирного тяготения применяется также в расчетах движения искусственных спутников Земли и межпланетных автоматических аппаратов.

Возмущения в движении планет . Планеты не движутся строго по законам Кеплера. Законы Кеплера точно соблюдались бы для движения данной планеты лишь в том случае, когда вокруг Солнца обращалась бы одна эта планета. Но в Солнечной системе планет много, все они притягиваются как Солнцем, так и друг другом. Поэтому возникают возмущения движения планет. В Солнечной системе возмущения невелики, потому что притяжение планеты Солнцем гораздо сильнее притяжения другими планетами. При вычислении видимого положения планет приходится учитывать возмущения. При запуске искусственных небесных тел и при расчете их траекторий пользуются приближенной теорией движения небесных тел – теорией возмущений.

Открытие Нептуна . Одним из ярких примеров триумфа закона все-мирного тяготения является открытие планеты Нептун. В 1781 г. английский астроном Вильям Гершель открыл планету Уран. Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1840 г., показала, что данные ее расходятся с действительностью.

Ученые предположили, что отклонение в движении Урана вызвано притяжением неизвестной планеты, находящейся от Солнца еще дальше, чем Уран. Зная отклонения от расчетной траектории (возмущения движения Урана), англичанин Адаме и француз Леверрье, пользуясь законом всемирного тяготения, вычислили положение этой планеты на небе. Адаме раньше закончил вычисления, но наблюдатели, которым он сообщил свои результаты, не торопились с проверкой. Тем временем Леверрье, закончив вычисления, указал немецкому астроному Галле место, где надо искать неизвестную планету. В первый же вечер, 28 сентября 1846 г., Галле, направив телескоп на указанное место, обнаружил новую планету. Ее назвали Нептуном.

Таким же образом 14 марта 1930 г. была открыта планета Плутон. Оба открытия, как говорят, были сделаны «на кончике пера».

При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.

Силы всемирного тяготения – самые универсальные из всех сил природы. Они действуют между любыми телами, обладающими массой, а массу имеют все тела. Для сил тяготения не существует никаких преград. Они действуют сквозь любые тела.

Литература

  1. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Просвещение, 1992. – 191 с.
  2. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.

Согласно законам Ньютона, движение тела с ускорением возможно только под действием силы. Т.к. падающие тела движутся с ускорением, направленным вниз, то на них действует сила притяжения к Земле. Но не только Земля обладает свойством действовать на все тела силой притяжения. Исаак Ньютон предположил, что между всеми телами действуют силы притяжения. Эти силы называются силами всемирного тяготения илигравитационными силами.

Распространив установленные закономерности – зависимость силы притяжения тел к Земле от расстояний между телами и от масс взаимодействующих тел, полученные в результате наблюдений,– Ньютон открыл в 1682 г. закон всемирного тяготения :Все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними:

Векторы сил всемирного тяготения направлены вдоль прямой, соединяющей тела. Коэффициент пропорциональности Gназываетсягравитационной постоянной (постоянной всемирного тяготения) и равна

.

Силой тяжести называется сила притяжения, действующая со стороны Земли на все тела:

.

Пусть
– масса Земли, а
– радиус Земли. Рассмотрим зависимость ускорения свободного падения от высоты подъема над поверхностью Земли:

Вес тела. Невесомость

Вес тела – сила, с которой тело давит на опору или подвес вследствие притяжения этого тела к земле. Вес тела приложен к опоре (подвесу). Величина веса тела зависит от того, как движется тело с опорой (подвесом).

Вес тела, т.е. сила, с которой тело действует на опору, и сила упругости, с которой опора действует на тело, в соответствие с третьим законом Ньютона равны по абсолютному значению и противоположны по направлению.

Если тело находится в покое на горизонтальной опоре или равномерно движется, на него действуют только сила тяжести и сила упругости со стороны опоры, следовательно вес тела равен силе тяжести (но эти силы приложены к разным телам):

.

При ускоренном движении вес тела не будет равен силе тяжести. Рассмотрим движение тела массой mпод действием сил тяжести и упругости с ускорением. По 2-му закону Ньютона:

Если ускорение тела направлено вниз, то вес тела меньше силы тяжести; если ускорение тела направлено вверх, то все тела больше силы тяжести.

Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой .

Если тело свободно падает, то из формулы * следует, что вес тела равен нулю. Исчезновение веса при движении опоры с ускорением свободного падения называется невесомостью .

Состояние невесомости наблюдается в самолете или космическом корабле при движении их с ускорением свободного падения независимо от скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением; поэтому в корабле наблюдается явление невесомости.

Движение тела под действием сил тяжести. Движение искусственных спутников. Первая космическая скорость

Если модуль перемещения тела много меньше расстояния до центра Земли, то можно считать силу всемирного тяготения во время движения постоянной, а движение тела равноускоренным. Самый простой случай движения тела под действием силы тяжести – свободное падение с нулевой начальной скоростью. В этом случае тело движется с ускорением свободного падения к центру Земли. Если есть начальная скорость, направленная не по вертикали, то тело движется по криволинейной траектории (параболе, если не учитывать сопротивление воздуха).

При некоторой начальной скорости тело, брошенное по касательной к поверхности Земли, под действием силы тяжести при отсутствии атмосферы может двигаться по окружности вокруг Земли, не падая на нее и не удаляясь от нее. Такая скорость называется первой космической скоростью , а тело, движущееся таким образом –искусственным спутником Земли (ИСЗ) .

Определим первую космическую скорость для Земли. Если тело под действием силы тяжести движется вокруг Земли равномерно по окружности, то ускорение свободного падения является его центростремительным ускорением:

.

Отсюда первая космическая скорость равна

.

Первая космическая скорость для любого небесного тела определяется таким же образом. Ускорение свободного падения на расстоянии R от центра небесного тела можно найти, воспользовавшись вторым законом Ньютона и законом всемирного тяготения:

.

Следовательно, первая космическая скорость на расстоянии R от центра небесного тела массойM равна

.

Для запуска на околоземную орбиту ИСЗ необходимо сначала вывести за пределы атмосферы. Поэтому космические корабли стартуют вертикально. На высоте 200 – 300 км от поверхности Земли, где атмосфера разрежена и почти не влияет на движение ИСЗ, ракета делает поворот и сообщает ИСЗ первую космическую скорость в направлении, перпендикулярном вертикали.