Проводящие сосуды растений. Ситовидные трубки и сосуды - элементы проводящей ткани растений

Проводящие ткани

Этот тип относится к сложным тканям, состоит из по-разному дифференцированных клеток. Кроме собственно проводящих элементов, в ткани присутствуют механические, выделительные и запасающие элементы (рис.26). Проводящие ткани объединяют все органы растения в единую систему. Выделяют два типа проводящих тканей: ксилему и флоэму (греч.xylon - дерево; phloios - кора, лыко). Они имеют как структурные, так и функциональные различия.

Проводящие элементы ксилемы образованы мертвыми клетками. По ним осуществляется дальний транспорт воды и растворённых в ней веществ от корня к листьям. Проводящие элементы флоэмы сохраняют живой протопласт. По ним осуществляется дальний транспорт от фотосинтезирующих листьев к корню.

Обычно ксилема и флоэма располагаются в теле растения в определённом порядке, образуя слои или проводящие пучки . В зависимости от строения различают несколько типов проводящих пучков, которые характерны для определённых групп растений. В коллатеральном открытом пучке между ксилемой и флоэмой находится камбий, обеспечивающий вторичный рост (рис.27-А, 28). В биколлатеральном открытом пучке флоэма располагается относительно ксилемы с двух сторон (рис.27-Б, 29). Закрытые пучки не содержат камбия, а отсюда к вторичному утолщению не способны (рис27-Б, 27-Г, 30,31). Можно встретить ещё два типа концентрических пучков, где или флоэма окружает ксилему (рис27-Д, 32), или ксилема - флоэму (рис. 27-Е).

Ксилема (древесина). Развитие ксилемы у высших растений связано с обеспечением водного обмена. Так как чрез эпидерму постоянно выводится вода, такое же количество влаги должно поглощаться растением и добавляться к органам, которые осуществляют транспирацию. Следует учитывать, что наличие живого протопласта в проводящих воду клетках сильно замедляло бы транспорт, мёртвые клетки здесь оказываются более функциональными. Однако мёртвая клетка не обладает тургесцентностью , поэтому механическими свойствами должна обладать оболочка. Примечание: тургесценция - состояния растительных клеток, тканей и органов, при которых они становятся упругими вследствие давления содержимого клеток на их эластичные оболочки. Действительно, проводящие элементы ксилемы состоят их вытянутых вдоль оси органа мертвых клеток с толстыми одревесневшими оболочками.

Первоначально ксилема образуется из первичной меристемы - прокамбия, расположенного на верхушках осевых органов. Вначале дифференцируется протоксилема, затем метаксилема. Известно три типа формирования ксилемы. При экзархном типе элементы протоксилемы сначала появляются на периферии пучка прокамбия, затем в центре возникают элементы метаксилемы. Если процесс идёт в противоположном направлении (т.е. от центра к периферии), то это эндархный тип. При мезархном типе ксилема закладывается в центре прокамбиального пучка, после чего откладывается как по направлению к центру, так и к периферии.

Для корня характерен экзархный тип закладки ксилемы, для стеблей - эндархный. У низкоорганизованных растений способы формирования ксилемы очень разнообразны и могут служить систематическими характеристиками.

У некоторых растений (например, однодольных) все клетки прокамбия дифференцируются в проводящие ткани, которые не способны к вторичному утолщению. У других же форм (например, древесных) между ксилемой и флоэмой остаются латеральные меристемы (камбий). Эти клетки способны делиться, обновляя ксилему и флоэму. Такой процесс называется вторичным ростом. У многих, произрастающих в сравнительно стабильных климатических условиях, растений, рост идёт постоянно. У форм, приспособленных к сезонным изменениям климата, - периодически. В результате этого образуются хорошо выраженные годовые кольца прироста.

Основные этапы дифференциации клеток прокамбия. Её клетки с тонкими оболочками, не препятствующими их растяжению при росте органа. Затем протопласт начинает откладывать вторичную оболочку. Но этот процесс имеет выраженные особенности. Вторичная оболочка откладывается не сплошным слоем, что не позволило бы клетке растягиваться, а в виде колец или по спирали. Удлинение клетки при этом не затруднено. У молодых клеток кольца или витки спирали расположены близко друг к другу. У зрелых клеток расходятся в результате растяжения клетки (рис.33). Кольчатые и спиральные утолщения оболочки росту не препятствуют, однако механически они уступают оболочкам, где вторичное утолщение образует сплошной слой. Поэтому после прекращения роста в ксилеме формируются элементы со сплошной одревесневшей оболочкой (метаксилемой ). Следует отметить, что вторичное утолщение здесь не кольчатое или спиральное, а точечное, лестничное, сетчатое (рис.34). Её клетки растягиваться, не способны и в течение нескольких часов отмирают. Этот процесс у расположенных поблизости клеток происходит скоординировано. В цитоплазме появляется большое количество лизосом. Затем распадаются, а находящиеся в них ферменты разрушают протопласт. При разрушении поперечных стенок расположенные цепочкой друг над другом клетки образуют полый сосуд (рис.35). Большинство покрытосеменных растений и некоторых папоротникообразных обладают сосудами.

Проводящую клетку не образующую сквозных перфораций в своей стенке, называют трахеидой. Передвижение воды по трахеидам идёт с меньшей скоростью, чем по сосудам. Дело в том, что у трахеидов нигде не прерывается первичная оболочка. Между собой трахеиды сообщатся посредством пор. Следует уточнить, что у растений пора представляет собой лишь углубление во вторичной оболочке до первичной оболочки и никаких сквозных перфораций между трахеидами не имеется.

Чаще всего встречаются окаймлённые поры (рис.35-1). У них канал, обращённый в полость клетки, образует расширение - камеру поры. Поры большинства хвойных растений на первичной оболочке имеют утолщение - торус, который представляет собой своеобразный клапан и способен регулировать интенсивность транспорта воды. Смещаясь, торус перекрывает ток воды через пору, но после этого вернуться в прежнее положение он уже не может, совершая одноразовое действие.

Поры бывают более или менее округлыми, вытянутыми перпендикулярно вытянутой оси (группа этих пор напоминает лестницу, поэтому такую пористость называют лестничной). Через поры транспорт осуществляется как в продольном, так и в поперечном направлении. Поры присутствуют не только у трахеид, но и отдельных клеток сосудов, которые образуют сосуд.

С точки зрения эволюционной теории трахеиды представляют собой первую и основную структуру, осуществляющую проведение воды в теле высших растений. Считают, что сосуды возникли из трахеид вследствие лизиса поперечных стенок между ними (рис.36). Большинство папоротникообразных и голосеменных сосудов не имеют. Передвижение воды у них происходит посредством трахеид.

В процессе эволюционного развития сосуды возникали у разных групп растений неоднократно, но наиболее важное функциональное значение они приобрели у покрытосеменных, у которых они имеются наряду с трахеидами. Считают, что обладание более совершенным механизмом транспорта помогло им не только выжить, но и достигнуть значительного разнообразия форм.

Ксилема является сложной тканью, кроме водопроводящих элементов в ней содержатся и другие. Механические функции выполняют волокна либриформа (лат. liber - луб, forma - форма). Присутствие дополнительных механических структур важно, так как, несмотря на утолщения, стенки водопроводящих элементов всё же слишком тонки. Они не способны самостоятельно удерживать большую массу многолетнего растения. Волокна развивались из трахеид. Для них характерны меньшие размеры, одревесневшие (лигнифицированные) оболочки и узкие полости. На стенке можно обнаружить, лишенные окаймления поры. Эти волокна проводить воду не могут, основная их функция опорная.

В ксилеме имеются и живые клетки. Их масса может достигать 25% от общего объема древесины. Так как эти клетки имеют округлую форму, то их называют паренхимой древесины. В теле растения паренхима располагается двумя способами. В первом случае клетки располагаются в виде вертикальных тяжей - это тяжевая паренхима . В другом случае паренхима образует горизонтальные лучи. Они называются сердцевинными лучами , так как соединяют сердцевину и кору. Сердцевина выполняет ряд функций, в том числе и запасание веществ.

Флоэма (луб). Это сложная ткань, так как образована разнотипными клетками. Основные клетки проводящие, называются ситовидными элементами (рис.37). Проводящие элементы ксилемы образованы мёртвыми клетками, а у флоэмы они в течение периода функционирования сохраняют живой, хотя и сильно изменённый протопласт. По флоэме происходит отток пластических веществ от фотосинтезирующих органов. Способностью проводить органические вещества обладают все живые клетки растений. А отсюда, если ксилему можно обнаружить только у высших растений, то транспорт органических веществ между клетками осуществляется и у низших растений.

Ксилема и флоэма развиваются из апикальных меристем. На первом этапе в прокамбиальном тяже формируется протофлоэма. По мере роста окружающих тканей она растягивается, и, когда рост завершается, вместо протофлоэмы формируется метафлоэма.

У различных групп высших растений можно встретить два типа ситовидных элементов. У папоротникообразных и голосеменных он представлены ситовидными клетками. Ситовидные поля в клетках рассеяны по боковым стенкам. В протопласте сохраняется несколько деструктированное ядро.

У покрытосеменных ситовидные элементы называются ситовидными трубками. Они сообщаются между собой через ситовидные пластинки. В зрелых клетках ядра отсутствуют. Однако рядом с ситовидной трубкой располагается клетка-спутница , образующаяся вместе с ситовидной трубкой в результате митотического деления общей материнской клетки (рис.38). Клетка-спутница имеет более плотную цитоплазму с большим количеством активных митохондрий, а также полноценно функционирующее ядро, огромное количество плазмодесм (в десять раз больше, чем у других клеток). Клетки-спутницы оказывают воздействие на функциональную активность безъядерных ситовидных клеток трубок.

Структура зрелых ситовидных клеток имеет некоторые особенности. Отсутствует вакуоль, поэтому цитоплазма сильно разжижается. Может отсутствовать (у покрытосеменных растений) или находиться в сморщенном функционально малоактивном состоянии ядро. Рибосомы и комплекс Гольджи также отсутствуют, но хорошо развит эндоплазматический ретикулум, который не только пронизывает цитоплазму, но и переходит в соседние клетки через поры ситовидных полей. Хорошо развитые митохондрии и пластиды встречаются в изобилии.

Между клетками транспорт веществ идет через отверстия, расположенные на клеточных оболочках. Такие отверстия называются порами, но в отличие от пор трахеид, являются сквозными. Предполагают, что они представляют собой сильно расширенные плазмодесмы, на стенках, которых откладывается полисахарид каллоза. Поры располагаются группами, образуя ситовидные поля . У примитивных форм ситовидные поля беспорядочно рассеяны по всей поверхности оболочки, у более совершенных покрытосеменных растений располагаются на примыкающих друг к другу концах соседних клеток, образуя ситовидную пластинку (рис.39). Если на ней находится одно ситовидное поле, её называют простой, если несколько - сложной.

Скорость передвижения растворов по ситовидным элементам составляет до 150см? час. Это в тысячу раз превышает скорость свободной диффузии. Вероятно, имеет место активный транспорт, а многочисленные митохондрии ситовидных элементов и клеток-спутниц поставляют для этого необходимую АТФ.

Срок деятельности ситовидных элементов флоэмы зависит от наличия латеральных меристем. Если они имеются, то ситовидные элементы работают в течение всей жизни растения.

Кроме ситовидных элементов и клеток-спутниц, во флоэме присутствуют лубяные волокна, склереиды и паренхима.

Огромное значение в жизни наземных растений играют механические и проводящие ткани.

Механические ткани

Каждый наблюдал, как тонкая соломина, поддерживая тяжелый колос, раскачивается на ветру, но не ломается.

Прочность придают растению механические ткани Они служат опорой тем органам, в которых находятся. Клетки механических тканей имеют утолщенные оболочки.

В листьях и других органах молодых растений клетки механической ткани живые. Такая ткань располагается отдельными тяжами под стебля и черешков листьев, окаймляет жилки листьев. Клетки живой механической ткани легко растяжимы и не мешают расти той части растения, в которой находятся. Благодаря этому органы растений действуют подобно пружинам. Они способны возвращаться в исходное состояние после снятия нагрузки. Каждый видел, как вновь поднимается трава, после того как по ней прошел человек.

Опорой частям растения, рост которых завершен, также служит механическая ткань, однако зрелые клетки этой ткани мертвые. К ним относят лубяные и древесные - длинные тонкие клетки, собранные в тяжи или пучки. Волокна придают прочность стеблю. Короткие мертвые клетки механической ткани (их называют каменистыми) образуют семенную кожуру, скорлупу орехов, косточки плодов, придают мякоти груш крупитчатый характер.

Проводящие ткани

Во всех частях растения находятся проводящие ткани. Они обеспечивают перенос воды и растворенных в ней веществ.

Проводящие ткани сформировались у растений в результате приспособления к жизни на суше. Тело наземных растений находится в двух средах жизни - наземно-воздушной и почвенной. В связи с этим возникли две проводящие ткани - древесина и луб. По древесине в направлении снизу вверх (от корней к ) поднимаются вода и растворенные в ней минеральные соли. Поэтому древесину называют водопроводящей тканью. Луб - это внутренняя часть коры. По лубу в направлении сверху вниз (от листьев к корням) передвигаются органические вещества. Древесина и луб образуют в теле растения непрерывную разветвленную систему, соединяющую все его части.

Главные проводящие элементы древесины - сосуды. Они представляют собой длинные трубки, образованные стенками мертвых клеток. Сначала клетки были живыми и имели тонкие растяжимые стенки. Затем стенки клеток одревеснели, живое содержимое погибло. Поперечные перегородки между клетками разрушились, и образовались длинные трубки. Они состоят из отдельных элементов и похожи на бочонки бон дин и крышки. По сосудам древесины свободно проходит вода с растворенными в ней веществами.

Проводящие элементы луба живые вытянутые клетки. Они соединяются концами и образуют длинные ряды клеток - трубки. В поперечных стенках клеток луба имеются мелкие отверстия (поры). Такие стенки похожи на сито, поэтому трубки называют ситовидными. По ним передвигаются растворы органических веществ от листьев ко всем органам растения.

Проводящая ткань состоит из живых или мёртвых удлинённых клеток, которые имеют вид трубок.

В стебле и листьях растений расположены пучки проводящей ткани. В проводящей ткани выделяют сосуды и ситовидные трубки.

Сосуды - последовательно соединённые мёртвые полые клетки, поперечные перегородки между которыми исчезают. По сосудам вода и растворённые в ней минеральные вещества из корней поступают в стебель и листья.

Ситовидные трубки - удлинённые безъядерные живые клетки, последовательно соединённые между собой. По ним органические вещества из листьев (где они образовались) перемещаются к другим органам растения.

Проводящая ткань обеспечивает транспортировку воды с растворёнными в ней минералами.

Эта ткань образует две транспортные системы:

  • восходящую (от корней к листьям);
  • нисходящую (от листьев ко всем остальным частям растений).

Восходящая транспортная система состоит из трахеид и сосудов (ксилема или древесина), причём сосуды более совершенные проводящие средства, чем трахеиды.

В нисходящих системах ток воды с продуктами фотосинтеза проходит по ситовидным трубкам (флоэма или луб).

Ксилема и флоэма образуют сосудисто-волокнистые пучки – «кровеносную систему» растения, которая пронизывает его полностью, соединяя в одно целое.

Ученые считают, что возникновение тканей связано в истории Земли с выходом растений на сушу. Когда часть растения оказалась в воздушной среде, а другая часть (корневая) - в почве, появилась необходимость доставки воды и минеральных солей от корней к листьям, а органических веществ - от листьев к корням. Так в ходе эволюции растительного мира возникло два типа проводящих тканей - древесина и луб.

По древесине (по трахеидам и сосудам) вода с растворенными минеральными веществами поднимается от корней к листьям - это водопроводящий, или восходящий, ток. По лубу (по ситовидным трубкам) образовавшиеся в зеленых листьях органические вещества поступают к корням и другим органам растения - это нисходящий ток.

Образовательная ткань

Образовательная ткань находится во всех растущих частях растения. Образовательная ткань состоит из клеток, которые способны делиться в течение всей жизни растения. Клетки здесь лежат очень быстро друг к другу. Благодаря делению они образуют множество новых клеток, обеспечивая тем самым рост растения в длину и толщину. Появившиеся в ходе деления образовательных тканей клетки затем преобразуются в клетки других тканей растения.

Это первичная ткань, из которой образуются все другие ткани растения. Она состоит из особых клеток, способных к многократному делению. Именно из этих клеток состоит зародыш любого растения.

Эта ткань сохраняется и у взрослого растения. Она располагается:

  • внизу корневой системы и на верхушках стеблей (обеспечивает рост растения в высоту и развитие корневой системы) – верхушечная образовательная ткань;
  • внутри стебля (обеспечивает рост растения в ширину, его утолщение) – боковая образовательная ткань.

В отличие от других тканей, цитоплазма образовательной ткани гуще и плотнее. Клетка имеет хорошо развитые органоиды, обеспечивающие синтез белка. Ядру характерны крупные размеры. Масса ядра и цитоплазмы поддерживаются в постоянном соотношении. Увеличение ядра сигнализирует о начале процесса клеточного деления, происходящего путем митоза для вегетативных частей растений и мейоза для спорогенных меристем.

Ткани растений: проводящие, механические и выделительные

Проводящие ткани расположены внутри побегов и корней. Содержат ксилему и флоэму. Они обеспечивают растению два тока веществ: восходящий и нисходящий. Восходящий ток обеспечивает ксилема – к надземным частям движутся растворенные в воде минеральные соли. Нисходящий ток обеспечивает флоэма – органические вещества, синтезированные в листьях и зеленых стеблях, движутся к другим органам (к корням).

Ксилема и флоэма – это сложные ткани, которые состоят из трех основных элементов:

Проводящую функцию выполняют также клетки паренхимы, служащие для транспорта веществ между тканями растения (например, сердцевинные лучи древесных стеблей обеспечивают перемещение веществ в горизонтальном направлении от первичной коры к сердцевине).

Ксилема

Ксилема (от греч. ксилон – срубленное дерево). Состоит из собственно проводящих элементов и сопровождающих клеток основной и механической тканей. Созревшие сосуды и трахеиды – это мертвые клетки, которые обеспечивают восходящий ток (движение воды и минеральных веществ). Элементы ксилемы могут выполнять еще и опорную функцию. По ксилеме весной к побегам поступают растворы не только минеральных солей, но и растворенные сахара, которые образуются вследствие гидролиза крахмала в запасающих тканях корней и стеблей (например, березовый сок).

Трахеиды – это древнейшие проводящие элементы ксилемы. Трахеиды представлены вытянутыми веретенообразными клетками с заостренными концами, расположенными одна над другой. Они имеют одревесневшие клеточные стенки с разной степенью утолщения (кольчатым, спиральным, пористым и т. п.), которые не дают им распадаться, растягиваться. В клеточных стенках есть сложные поры, затянутые поровой мембраной, через которую проходит вода. Через поровую мембрану происходит фильтрация растворов. Движение жидкости по трахеидам медленное, так как поровая мембрана препятствует движению воды. У высших споровых и голосеменных растений на трахеиды приходится около 95 % объема древесины.

Сосуды или трахеи , состоят из удлиненных клеток, расположенных одна над другой. Они образуют трубки при слиянии и отмирании отдельных клеток – члеников сосудов. Цитоплазма отмирает. Между клетками сосудов есть поперечные стенки, которые имеют большие отверстия. В стенках сосудов есть утолщения разнообразной формы (кольчатые, спиральные и т. п.). Восходящий ток происходит по относительно молодым сосудам, которые с течением времени заполняются воздухом, закупориваются выростами соседних живых клеток (паренхимы) и выполняют далее опорную функцию. По сосудам жидкость движется быстрее, чем по трахеидам.

Флоэма

Флоэма (от греч. флойос – кора) состоит из проводящих элементов и сопровождающих клеток.

Ситовидные трубки – это живые клетки, которые последовательно соединяются своими концами, не имеют органелл, ядра. Обеспечивают движение от листьев по стеблю к корню (проводят органические вещества, продукты фотосинтеза). В них есть разветвленная сеть фибрилл, внутреннее содержимое сильно обводнено. Между собою разделены пленочными перегородками с большим количеством мелких отверстий (перфораций) – ситовидными (перфорационными) пластинками (напоминают сито). Продольные оболочки этих клеток утолщенные, но не древеснеют. В цитоплазме ситовидных трубок разрушается тонопласт (оболочка вакуолей), и вакуолярный сок с растворенными сахарами смешивается с цитоплазмой. С помощью тяжей цитоплазмы соседние ситовидные трубки объединены в единое целое. Скорость движения по ситовидным трубкам меньше, чем по сосудам. Функционируют ситовидные трубки 3-4 года.

Каждый членик ситовидной трубки сопровождают клетки паренхимы – клетки-спутники , которые секретируют вещества (ферменты, АТФ и т. п.), необходимые для их функционирования. Клетки-спутники имеют большие ядра, заполнены цитоплазмой с органеллами. Они присущи не всем растениям. Их нет во флоэме высших споровых и голосеменных растений. Клетки-спутники помогают осуществить процесс активного транспорта по ситовидным трубкам.

Флоэма и ксилема образуют сосудисто-волокнистые (проводящие) пучки . Их можно увидеть в листьях, стеблях травянистых растений. В стволах деревьев проводящие пучки сливаются между собой и образуют кольца. Флоэма входит в состав луба и расположена ближе к поверхности. Ксилема входит в состав древесины и содержится ближе к сердцевине.

Сосудисто-волокнистые пучки бывают закрытые и открытые – это таксономический признак. Закрытые пучки не имеют между слоями ксилемы и флоэмы слоя камбия, поэтому образование новых элементов в них не происходит. Закрытые пучки встречаются преимущественно у однодольных растений. Открытые сосудисто-волокнистые пучки между флоэмой и ксилемой имеют слой камбия. Вследствие деятельности камбия пучок разрастается и происходит утолщение органа. Открытые пучки встречаются преимущественно у двухдольных и голосеменных растений.

Выполняют опорные функции. Образуют скелет растения, обеспечивают его прочность, придают упругость, поддерживают органы в определенном положении. Не имеют механических тканей молодые участки растущих органов. Наиболее развиты механические ткани в стебле. В корне механическая ткань сосредоточена в центре органа. Различают коленхиму и склеренхиму.

Коленхима

Коленхима (от греч. кола – клей и энхима – налитое) – состоит из живых хлорофиллоносных клеток с неравномерно утолщенными стенками. Различают угловую и пластинчатую коленхимы. Угловая коленхима состоит из клеток, которые имеют шестиугольную форму. Утолщение происходит вдоль ребер (по углам). Встречается в стеблях двудольных растений (преимущественно травянистых) и черенках листьев. Не мешает росту органов в длину. Пластинчатая коленхима имеет клетки с формой параллелепипеда, в котором утолщена лишь пара стенок, параллельных поверхности стебля. Встречается в стеблях древесных растений.

Склеренхима

Склеренхима (от греч. склерос – твердый) – это механическая ткань, которая состоит из одревесневших (пропитанных лигнином) преимущественно мертвых клеток, которые имеют равномерно утолщенные клеточные стенки. Ядро и цитоплазма разрушаются. Различают две разновидности: склеренхимные волокна и склереиды.

Склеренхимные волокна

Клетки имеют удлиненную форму с заостренными концами и поровыми каналами в клеточных стенках. Стенки клеток утолщенные и очень крепкие. Клетки плотно прилегают одна к другой. На поперечном срезе – многогранные.

В древесине склеренхимные волокна называются древесными . Они являются механической частью ксилемы, защищают сосуды от давления других тканей, ломкости.

Склеренхимные волокна луба называются лубяными. Обычно они неодревесневшие, крепкие и эластичные (используются в текстильной промышленности – волокна льна и т. п.).

Склереиды

Образуются из клеток основной ткани вследствие утолщения клеточных стенок, пропитки их лигнином. Имеют разную форму и встречаются в разных органах растений. Склереиды с одинаковым диаметром клеток называются каменистыми клетками . Они наиболее прочные. Встречаются в косточках абрикосов, вишен, скорлупе грецких орехов и т. п.

Склереиды также могут иметь звездчатую форму, расширения на обоих концах клетки, палочковидную форму.

Выделительные ткани растений

В результате процесса метаболизма в растениях образуются вещества, которые по разным причинам почти не используются (за исключением млечного сока). Обычно эти продукты накапливаются в определенных клетках. Представлены выделительные ткани группами клеток или одиночными. Делятся на внешние и внутренние.

Внешние выделительные ткани

Внешние выделительные ткани представлены видоизменениями эпидермы и особыми железистыми клетками в основной ткани внутри растений с межклеточными полостями и системой выделительных ходов, которыми секреты выводятся наружу. Выделительные ходы в разных направлениях пронизывают стебли и частично листья и имеют оболочку из нескольких слоев отмерших и живых клеток. Видоизменения эпидермы представлены многоклеточными (реже одноклеточными) железистыми волосками или пластинками разнообразного строения. Внешние выделительные ткани производят эфирные масла, бальзамы, смолы и т. п.

Известно около 3 тыс. видов голосеменных и покрытосеменных растений, которые производят эфирные масла. Около 200 видов (лавандовое, розовое масла и др.) из них используют как лечебные средства, в парфюмерии, кулинарии, изготовлении лаков и т. п. Эфирные масла – это легкие органические вещества разного химического состава. Их значение в жизни растений: запахом привлекают опылителей, отпугивают врагов, некоторые (фитонциды) – убивают или подавляют рост и размножение микроорганизмов.

Смолы образуются в клетках, которые окружают смоляные ходы, как продукты жизнедеятельности голосеменных (сосна, кипарис и т. п.) и покрытосеменных (некоторые бобовые, зонтичные и т. п.) растений. Это – разные органические вещества (смоляные кислоты, спирты и т. п.). Наружу выделяются с эфирными маслами в виде густых жидкостей, которые называются бальзамами . Они имеют антибактериальные свойства. Используются растением в природе и человеком в медицине для заживления ран. Канадский бальзам, который получают из пихты бальзамической, применяют в микроскопической технике для изготовления микропрепаратов. Основу бальзамов хвойных составляет скипидар (используют как растворитель красок, лаков и т. п.) и твердая смола – канифоль (используют при паянии, изготовлении лаков, сургуча, натирании струн смычковых музыкальных инструментов). Окаменелая смола хвойных деревьев второй половины мелово-палеогенового периода называется янтарь (используется как сырье для ювелирных изделий).

Железы, расположенные в цветке или на разных частях побегов, клетки которых выделяют нектар, называются нектарниками . Они образованы основной тканью, имеют протоки, которые открываются наружу. Выросты эпидермы, которые окружают проток, придают нектарнику разную форму (горбовидную, ямковидную, рожковидную и т. п.). Нектар – это водный раствор глюкозы и фруктозы (концентрация составляет от 3 до 72 %) с примесями ароматических веществ. Основная функция – привлечение насекомых и птиц для опыления цветков.

Благодаря гидатодам – водяным устьицам – происходит гуттация – выделение капельной воды растениями (при транспирации вода выделяется в виде пара) и солей. Гуттация – это защитный механизм, который происходит тогда, когда с удалением лишней воды не справляется транспирация. Характерна для растений, которые растут во влажном климате.

Специальные железы насекомоядных растений (известно свыше 500 видов покрытосеменных) выделяют ферменты, которые разлагают белки насекомых. Таким образом, насекомоядные растения восполняют недостаток азотистых соединений, так как их в почве не хватает. Всасываются переваренные вещества через устьица. Наиболее известны пузырчатка и росянка.

Железистые волоски накапливают и выводят наружу, например, эфирные масла (мята и т. п.), ферменты и муравьиную кислоту, которые вызывают ощущение боли и приводят к ожогам (крапива) и др.

Внутренние выделительные ткани

Внутренние выделительные ткани – это вместилища веществ или отдельные клетки, которые на протяжении жизни растения наружу не открываются. Это, например, млечники – система удлиненных клеток некоторых растений, по которым движется сок. Сок таких растений является эмульсией водного раствора сахаров, белков и минеральных веществ с каплями липидов и других гидрофобных соединений, называется латексом и имеет молочно-белый (молочай, мак и т. п.) или оранжевый (чистотел) цвета. В млечном соке некоторых растений (например, гевея бразильская) содержится значительное количество каучука .

К внутренней выделительной ткани принадлежат идиобласты – отдельные разрозненные клетки среди других тканей. В них накапливаются кристаллы щавелевокислого кальция, дубильные вещества и т. п. Клетки (идиобласты) цитрусовых (лимон, мандарин, апельсин и т. п.) накапливают эфирные масла.

В биологии тканью называют группу клеток, имеющих сходное строение и происхождение, а также выполняющих одинаковые функции . У растений наиболее разнообразные и сложно устроенные ткани развились в процессе эволюции у покрытосеменных (цветковых). Органы растений обычно образованы несколькими тканями. Можно выделить шесть типов тканей растений: образовательную, основную, проводящую, механическую, покровную, секреторную. Каждая ткань включает подтипы. Между тканями, а также внутри них бывают межклетники - промежутки между клетками.

Образовательная ткань

Благодаря делению клеток образовательной ткани растение увеличивается в длину и толщину. При этом часть клеток образовательной ткани дифференцируется в клетки других тканей.

Клетки образовательной ткани достаточно мелкие, плотно прилегают друг к другу, имеют крупное ядро и тонкую оболочку.

Образовательная ткань в растениях находится в конусах нарастания корня (кончик корня) и стебля (верхушка стебля), бывает в основаниях междоузлий, также образовательная ткань составляет камбий (который обеспечивает рост стебля в толщину).

Клетки конуса нарастания корня. На фото виден процесс деления клеток (расхождение хромосом, растворение ядра).

Паренхима, или основная ткань

К паренхиме относят несколько разновидностей тканей. Различают ассимиляционную (фотосинтезирующую), запасающую, водоносную и воздухоносную основную ткань.

Фотосинтезирующая ткань состоит из клеток, содержащих хлорофилл, т. е. зеленых клеток. Эти клетки имеют тонкие стенки, содержат большое количество хлоропластов. Основная их функция - фотосинтез. Ассимиляционная ткань составляет мякоть листьев, входит в состав коры молодых стеблей деревьев и стебли трав.

В клетках запасающей ткани накапливаются запасы питательных веществ. Эта ткань составляет эндосперм семян, входит в состав клубней, луковиц и др. Сердцевина стебля, внутренние клетки коры стебля и корня, сочный околоплодник также обычно состоят из запасающей паренхимы.

Водоносная паренхима свойственна лишь ряду растений, обычно засушливых мест обитания. В клетках этой ткани накапливается вода. Водоносная ткань может быть как в листьях (алоэ), так и в стебле (кактусы).

Воздухоносная ткань свойственна водным и болотным растениям. Ее особенностью является наличие большого количества межклетников, содержащих воздух. Это облегчает газообмен растению, когда он затруднен.

Проводящая ткань

Общей функцией различных проводящих тканей является проведение веществ от одних органов растения к другим. В стволах древесных растений клетки проводящей ткани расположены в древесине и лубе. Причем в древесине расположены сосуды (трахеи) и трахеиды , по которым перемещается водный раствор от корней, а в лубе - ситовидные трубки , по которым перемещаются органические вещества от фотосинтезирующих листьев.

Сосуды и трахеиды - это мертвые клетки. По сосудам водный раствор поднимается быстрее, чем по трахеидам.

Ситовидные трубки являются живыми, но безъядерными клетками.

Покровная ткань

К покровной ткани относится кожица (эпидермис), пробка, корка. Кожица покрывает листья и зеленые стебли, это живые клетки. Пробка состоит из мертвых клеток, пропитанных жироподобным веществом, не пропускающим воду и воздух.

Главные функции любой покровной ткани - это защита внутренних клеток растения от механического повреждения, высыхания, проникновения микроорганизмов, перепадов температуры.

Пробка является вторичной покровной тканью, так как возникает на месте кожицы у стеблей и корней многолетних растений.

Корка состоит из пробки и отмерших слоев основной ткани.

Механическая ткань

Для клеток механической ткани характерны сильно утолщенные одревесневшие оболочки. Функции механической ткани - это придание телу и органам растений прочности и упругости.

В стеблях покрытосеменных растений механическая ткань может располагаться одним целостным слоем или же отдельными тяжами, отстоящими друг от друга.

В листьях волокна механической ткани обычно располагаются рядом с волокнами проводящей ткани. Вместе они образуют жилки листа.

Секреторная, или выделительная ткань растений

Клетки секреторной ткани выделяют различные вещества, и поэтому функции у этой ткани разные. Выделительные клетки у растений выстилают смоляные и эфиромасличные ходы, образуют своеобразные железы и железистые волоски. К секреторной ткани принадлежат нектарники цветков.

Смолы выполняют защитную функцию при повреждении стебля растения.

Нектар привлекает насекомых-опылителей.

Бывают секреторные клетки, выводящие продукты обмена, например, соли щавелевой кислоты.